File size: 2,816 Bytes
bd2737e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
license: gpl-3.0
datasets:
- Msun/modelnet40
language:
- en
metrics:
- accuracy
tags:
- deeplearning
---
# **Automated Defect Detection in 3D Mesh Files Using Multi-Model Deep Learning Approaches**  

## **πŸ“Œ Project Overview**  
This project introduces a **multi-modal deep learning approach** to detect **defects in 3D mesh files** by combining:  
- **CNN (Convolutional Neural Network)** for **object classification** using **ModelNet40** dataset images.  
- **GNN (Graph Neural Network)** for **defect identification** in **OFF files (3D mesh models).**  
- **Fusion Model** integrating **CNN and GNN** for improved classification accuracy.  

## **πŸ“ Dataset & Novelty**  
The dataset used in this project is **novel and proprietary**, focusing on defect detection in 3D mesh files. Only the **ModelNet40 dataset** is publicly available.  

### **πŸ”Ή Folder Structure**  
```
πŸ“¦ Dataset
 ┣ πŸ“‚ Images
 ┃ ┣ πŸ“‚ train
 ┃ ┃ ┣ πŸ“‚ category_1
 ┃ ┃ ┣ πŸ“‚ category_2
 ┃ ┃ β”— ...
 ┃ β”— πŸ“‚ test
 β”— πŸ“‚ OFF_files
   ┣ πŸ“‚ train
   ┃ ┣ πŸ“‚ category_1
   ┃ ┃ ┣ πŸ“‚ normal
   ┃ ┃ β”— πŸ“‚ defected
   ┃ ┣ πŸ“‚ category_2
   ┃ ┃ ┣ πŸ“‚ normal
   ┃ ┃ β”— πŸ“‚ defected
   β”— πŸ“‚ test
 
```
- **Images Folder** β†’ Contains object images categorized into different classes (used for CNN).  
- **OFF Files Folder** β†’ Each category has **"normal"** and **"defected"** OFF files (used for GNN).  

---

## **πŸš€ Model Architecture**  
### **πŸ”Ή CNN Model (Image Classification)**
- Uses a **pretrained CNN model (ResNet)** to classify objects.  

### **πŸ”Ή GNN Model (Defect Identification)**
- Processes **OFF files** using **node features** and **adjacency matrices**.  
- Uses a **13-layer deep GNN model** to capture mesh structure defects.  

### **πŸ”Ή Multi-Modal Fusion Model**
- Combines **CNN and GNN outputs** using **fully connected layers**.  
- Improves **accuracy by leveraging both image and graph information**.  

---

## **βš™οΈ Installation & Setup**  
### **πŸ”Ή 1️⃣ Install Dependencies**  
```bash
pip install tensorflow numpy networkx trimesh
```

### **πŸ”Ή 2️⃣ Run Training**  
```bash
python Utils/train.py
```

### **πŸ”Ή 3️⃣ Evaluate Model**  
```bash
python Utils/evaluate.py
```

---

## **πŸ“Š Results & Evaluation**  
- **CNN Classification Accuracy:**  **76%**  
- **GNN Defect Detection Accuracy:**  **78%**  
- **Fusion Model Accuracy:**  **85%**  

---

## **πŸ› οΈ Future Improvements**  
- Use **a more complex GNN model** (with at least **13 layers**).  
- Improve **multi-modal fusion model** by adding **extra layers**.  
- Train on **a larger dataset** to improve generalization.  

---

## **πŸ‘¨β€πŸ’» Author**  
**Dhanush**  
πŸ“§ Contact: [e-mail](mailto:[email protected])

---