|
---
|
|
license: mit
|
|
---
|
|
|
|
# DepthPro: Human Segmentation
|
|
|
|
- This work is a part of the [DepthPro: Beyond Depth Estimation](https://github.com/geetu040/depthpro-beyond-depth) repository, which further explores this model's capabilities on:
|
|
- Image Segmentation - Human Segmentation
|
|
- Image Super Resolution - 384px to 1536px (4x Upscaling)
|
|
- Image Super Resolution - 256px to 1024px (4x Upscaling)
|
|
|
|
# Usage
|
|
|
|
Install the required libraries:
|
|
```bash
|
|
pip install -q numpy pillow torch torchvision
|
|
pip install -q git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers
|
|
```
|
|
|
|
Import the required libraries:
|
|
```py
|
|
import requests
|
|
from PIL import Image
|
|
import torch
|
|
from huggingface_hub import hf_hub_download
|
|
import matplotlib.pyplot as plt
|
|
|
|
# custom installation from this PR: https://github.com/huggingface/transformers/pull/34583
|
|
# !pip install git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers
|
|
from transformers import DepthProConfig, DepthProImageProcessorFast, DepthProForDepthEstimation
|
|
```
|
|
|
|
Load DepthProForDepthEstimation model
|
|
```py
|
|
# load DepthPro model, used as backbone
|
|
config = DepthProConfig(
|
|
patch_size=192,
|
|
patch_embeddings_size=16,
|
|
num_hidden_layers=12,
|
|
intermediate_hook_ids=[11, 8, 7, 5],
|
|
intermediate_feature_dims=[256, 256, 256, 256],
|
|
scaled_images_ratios=[0.5, 1.0],
|
|
scaled_images_overlap_ratios=[0.5, 0.25],
|
|
scaled_images_feature_dims=[1024, 512],
|
|
use_fov_model=False,
|
|
)
|
|
depthpro_for_depth_estimation = DepthProForDepthEstimation(config)
|
|
```
|
|
|
|
Create DepthProForSuperResolution model
|
|
```py
|
|
# create DepthPro for super resolution
|
|
class DepthProForSuperResolution(torch.nn.Module):
|
|
def __init__(self, depthpro_for_depth_estimation):
|
|
super().__init__()
|
|
|
|
self.depthpro_for_depth_estimation = depthpro_for_depth_estimation
|
|
hidden_size = self.depthpro_for_depth_estimation.config.fusion_hidden_size
|
|
|
|
self.image_head = torch.nn.Sequential(
|
|
torch.nn.ConvTranspose2d(
|
|
in_channels=config.num_channels,
|
|
out_channels=hidden_size,
|
|
kernel_size=4, stride=2, padding=1
|
|
),
|
|
torch.nn.ReLU(),
|
|
)
|
|
|
|
self.head = torch.nn.Sequential(
|
|
torch.nn.Conv2d(
|
|
in_channels=hidden_size,
|
|
out_channels=hidden_size,
|
|
kernel_size=3, stride=1, padding=1
|
|
),
|
|
torch.nn.ReLU(),
|
|
torch.nn.ConvTranspose2d(
|
|
in_channels=hidden_size,
|
|
out_channels=hidden_size,
|
|
kernel_size=4, stride=2, padding=1
|
|
),
|
|
torch.nn.ReLU(),
|
|
torch.nn.Conv2d(
|
|
in_channels=hidden_size,
|
|
out_channels=self.depthpro_for_depth_estimation.config.num_channels,
|
|
kernel_size=3, stride=1, padding=1
|
|
),
|
|
)
|
|
|
|
def forward(self, pixel_values):
|
|
# x is the low resolution image
|
|
x = pixel_values
|
|
encoder_features = self.depthpro_for_depth_estimation.depth_pro(x).features
|
|
fused_hidden_state = self.depthpro_for_depth_estimation.fusion_stage(encoder_features)[-1]
|
|
x = self.image_head(x)
|
|
x = torch.nn.functional.interpolate(x, size=fused_hidden_state.shape[2:])
|
|
x = x + fused_hidden_state
|
|
x = self.head(x)
|
|
return x
|
|
```
|
|
|
|
Load the model and image processor:
|
|
```py
|
|
# initialize the model
|
|
model = DepthProForSuperResolution(depthpro_for_depth_estimation)
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model = model.to(device)
|
|
|
|
# load weights
|
|
weights_path = hf_hub_download(repo_id="geetu040/DepthPro_SR_4x_384p", filename="model_weights.pth")
|
|
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu')))
|
|
|
|
# load image processor
|
|
image_processor = DepthProImageProcessorFast(
|
|
do_resize=True,
|
|
size={"width": 384, "height": 384},
|
|
do_rescale=True,
|
|
do_normalize=True
|
|
)
|
|
|
|
# define crop function to ensure square image
|
|
def crop_image(image):
|
|
"""
|
|
Crops the image from the center to make aspect ratio 1:1.
|
|
"""
|
|
width, height = image.size
|
|
min_dim = min(width, height)
|
|
left = (width - min_dim) // 2
|
|
top = (height - min_dim) // 2
|
|
right = left + min_dim
|
|
bottom = top + min_dim
|
|
image = image.crop((left, top, right, bottom))
|
|
return image
|
|
```
|
|
|
|
Inference:
|
|
```py
|
|
# inference
|
|
|
|
url = "https://huggingface.co/spaces/geetu040/DepthPro_SR_4x_384p/resolve/main/assets/examples/man_with_arms_open.jpeg"
|
|
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
image = crop_image(image)
|
|
image = image.resize((384, 384), Image.Resampling.BICUBIC)
|
|
|
|
# prepare image for the model
|
|
inputs = image_processor(images=image, return_tensors="pt")
|
|
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
# convert tensors to PIL.Image
|
|
output = outputs[0] # extract the first and only batch
|
|
output = output.cpu() # unload from cuda if used
|
|
output = torch.permute(output, (1, 2, 0)) # (C, H, W) -> (H, W, C)
|
|
output = output * 0.5 + 0.5 # undo normalization
|
|
output = output * 255. # undo scaling
|
|
output = output.clip(0, 255.) # fix out of range
|
|
output = output.numpy() # convert to numpy
|
|
output = output.astype('uint8') # convert to PIL.Image compatible format
|
|
output = Image.fromarray(output) # create PIL.Image object
|
|
|
|
# visualize the prediction
|
|
fig, axes = plt.subplots(1, 2, figsize=(20, 20))
|
|
axes[0].imshow(image)
|
|
axes[0].set_title(f'Low-Resolution (LR) {image.size}')
|
|
axes[0].axis('off')
|
|
axes[1].imshow(output)
|
|
axes[1].set_title(f'Super-Resolution (SR) {output.size}')
|
|
axes[1].axis('off')
|
|
plt.subplots_adjust(wspace=0, hspace=0)
|
|
plt.show()
|
|
```
|
|
|