File size: 3,766 Bytes
2df80b8
 
 
103021b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---

license: mit
---


# DepthPro: Human Segmentation

- This work is a part of the [DepthPro: Beyond Depth Estimation](https://github.com/geetu040/depthpro-beyond-depth) repository, which further explores this model's capabilities on:
    - Image Segmentation - Human Segmentation
    - Image Super Resolution - 384px to 1536px (4x Upscaling)
    - Image Super Resolution - 256px to 1024px (4x Upscaling)

# Usage

Install the required libraries:
```bash

pip install -q numpy pillow torch torchvision

pip install -q git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers

```

Import the required libraries:
```py

import requests

from PIL import Image

import torch

import torch.nn as nn

import torch.nn.functional as F

from huggingface_hub import hf_hub_download

import matplotlib.pyplot as plt



# custom installation from this PR: https://github.com/huggingface/transformers/pull/34583

# !pip install git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers

from transformers import DepthProConfig, DepthProImageProcessorFast, DepthProForDepthEstimation

```

Load the model and image processor:
```py

# initialize model

config = DepthProConfig(use_fov_model=False)

model = DepthProForDepthEstimation(config)

features = config.fusion_hidden_size

semantic_classifier_dropout = 0.1

num_labels = 1

model.head.head = nn.Sequential(

    nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False),

    nn.BatchNorm2d(features),

    nn.ReLU(),

    nn.Dropout(semantic_classifier_dropout),

    nn.Conv2d(features, features, kernel_size=1),

    nn.ConvTranspose2d(features, num_labels, kernel_size=2, stride=2, padding=0, bias=True),

)



# load weights

weights_path = hf_hub_download(repo_id="geetu040/DepthPro_Segmentation_Human", filename="model_weights.pth")

model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu'), weights_only=True))



# load to device

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = model.to(device)



# load image processor

image_processor = DepthProImageProcessorFast()

```

Inference:
```py

# inference



url = "https://huggingface.co/spaces/geetu040/DepthPro_Segmentation_Human/resolve/main/assets/examples/man_with_arms_open.jpg"



image = Image.open(requests.get(url, stream=True).raw)

image = image.convert("RGB")



# prepare image for the model

inputs = image_processor(images=image, return_tensors="pt")

inputs = {k: v.to(device) for k, v in inputs.items()}



# inference

with torch.no_grad():

    output = model(**inputs)



# convert tensors to PIL.Image

output = output[0]                 # get output logits

output = F.interpolate(

    output.unsqueeze(0),

    size=(image.height, image.width)

)                                  # interpolate to match size

output = output.squeeze()          # get first and only batch and channel

output = output.sigmoid()          # apply sigmoid for binary segmentation

output = (output > 0.5).float()    # threshold to create binary mask

output = output.cpu()              # unload from cuda if used

output = output * 255              # convert [0, 1] to [0, 255]

output = output.numpy()            # convert to numpy

output = output.astype('uint8')    # convert to PIL.Image compatible format

output = Image.fromarray(output)   # create PIL.Image object



# visualize the prediction

fig, axes = plt.subplots(1, 2, figsize=(20, 20))

axes[0].imshow(image)

axes[0].set_title(f'Low-Resolution (LR) {image.size}')

axes[0].axis('off')

axes[1].imshow(output)

axes[1].set_title(f'Super-Resolution (SR) {output.size}')

axes[1].axis('off')

plt.subplots_adjust(wspace=0, hspace=0)

plt.show()

```