File size: 6,673 Bytes
52277f6 0071a9b 52277f6 6749405 52277f6 6749405 52277f6 9885975 52277f6 4a40b55 8ded19c 021cbab 52277f6 4a40b55 6ef4fd5 4a40b55 6749405 831b1b4 4a40b55 75a364e 4a40b55 75a364e 4a40b55 831b1b4 4a40b55 8ded19c 4a40b55 021cbab 4a40b55 021cbab 4a40b55 52277f6 988b4da 6749405 988b4da 6749405 7441644 988b4da 6749405 7441644 988b4da 6749405 7441644 988b4da 6749405 7441644 988b4da 52277f6 8ded19c 52277f6 6749405 52277f6 0071a9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
---
tags:
- biology
license: other
---
# AIDO.Protein-16B
AIDO.Protein-16B is a protein language model, trained on 1.2 trillion amino acids sourced from UniRef90 and ColabFoldDB.
By leveraging MoE layers, AIDO.Protein efficiently scales to 16 billion parameters, delivering exceptional performance across a vast variety of tasks in protein sequence understanding and sequence generation. Remarkably, AIDO.Protein demonstrates exceptional capability despite being trained solely on single protein sequences. Across over 280 DMS protein fitness prediction tasks, our model outperforms previous state-of-the-art protein sequence models without MSA and achieves 99% of the performance of models that utilize MSA, highlighting the strength of its learned representations.
## Model Architecture Details
AIDO.Protein is a transformer encoder-only architecture with the dense MLP layer in each transformer block replaced by a sparse MoE layer. It uses single amino acid tokenization and is optimized using a masked languange modeling (MLM) training objective. For each token, 2 experts will be selectively activated by the top-2 rounting mechiansim.
<center><img src="proteinmoe_architecture.png" alt="An Overview of AIDO.Protein" style="width:70%; height:auto;" /></center>
More architecture details are shown below:
|Model Arch Component | Value |
| ------------- |:-------------:|
| Num Attention Head |36 |
| Num Hidden Layer |36 |
| Hidden Size |2304 |
| FFN Hidden Size |7680 |
| Num MoE Layer per Block| 8|
| Num MoE Layer per Token| 2|
|Vocab Size|44 |
| Context Length |2048 |
## Pre-training of AIDO.Protein-16B
Here we briefly introduce the details of pre-training of AIDO.Protein 16B. For more information, please refer to [our paper](https://www.biorxiv.org/content/10.1101/2024.11.29.625425v1)
### Data
Inspired by previous work, We initially trained AIDO.Protein with 1.2 trillion amino acids sourced from the combination of Uniref90 and ColabeFoldDB databases. Given the effectiveness of Uniref90 for previous protein language models and the observed benefits of continuous training on domina-specific data for enhancing downstream task performance, AIDO.Protein is further trained on an additional 100 billion amino acids from Uniref90.
### Training Details
The weights of our 16 billion parameter model occupy over 200GB of memory in 32 bit precision. To train a model of this size, we use model and tensor parallelism to split training across 256 H100 GPUs using the Megatron-LM framework. We also employed bfloat16 mixed precision training to allow for training with large context length at scale. With this configuration, AIDO.Protein 16B took 25 days to train.
| Hyper-params | Value |
| ------------- |:-------------:|
| Global Batch Size | 2048 |
| Per Device Micro Batch Size | 8 |
| Precision | Mixed FP32-BF16 |
|1st Stage LR| [2e-6,2e-4]|
|2nd Stage LR| [1e-6,1e-5]|
|3rd Stage LR| [1e-6,1e-5]|
|1st Stage Num Tokens| 1 trillion|
|2nd Stage Num Tokens| 200 billion|
|3rd Stage Num Tokens| 100 billion|
### Tokenization
We encode protein sequence with single amino acid resolution with 44 vocabularies, where 24 tokens represent amino acid types and 20 are special tokens. Sequences were also suffixed with a `[SEP]` token as hooks for downstream tasks.
## Evaluation of AIDO.Protein 16B
We assess the advantages of pretraining AIDO.Protein 16B through experiments across more than 300 tasks from two important protein benchmarks, xTrimoPGLM benchmark and ProteinGym DMS benchmark, encompassing residue-level, sequence-level, and protein-protein interaction (PPI) level tasks. We further adapted our model for structure-conditioned protein sequence generation tasks
## Results
### xTrimoPGLM Benchmark
<center><img src="xtrimo_results.png" alt="An Overview of AIDO.Protein" style="width:70%; height:auto;" /></center>
### ProteinGym DMS Benchmark
<center><img src="dms_results.png" alt="An Overview of AIDO.Protein" style="width:70%; height:auto;" /></center>
### Inverse Folding Generation
<center><img src="inverse_folding.png" alt="An Overview of AIDO.Protein" style="width:70%; height:auto;" /></center>
## How to Use
### Build any downstream models from this backbone with ModelGenerator
For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator)
```bash
mgen fit --model SequenceClassification --model.backbone aido_protein_16b --data SequenceClassificationDataModule --data.path <hf_or_local_path_to_your_dataset>
mgen test --model SequenceClassification --model.backbone aido_protein_16b --data SequenceClassificationDataModule --data.path <hf_or_local_path_to_your_dataset>
```
### Or use directly in Python
#### Embedding
```python
from modelgenerator.tasks import Embed
model = Embed.from_config({"model.backbone": "aido_protein_16b"}).eval()
transformed_batch = model.transform({"sequences": ["HELLQ", "WRLD"]})
embedding = model(transformed_batch)
print(embedding.shape)
print(embedding)
```
#### Sequence Level Classification
```python
import torch
from modelgenerator.tasks import SequenceClassification
model = SequenceClassification.from_config({"model.backbone": "aido_protein_16b", "model.n_classes": 2}).eval()
transformed_batch = model.transform({"sequences": ["HELLQ", "WRLD"]})
logits = model(transformed_batch)
print(logits)
print(torch.argmax(logits, dim=-1))
```
#### Token Level Classification
```python
import torch
from modelgenerator.tasks import TokenClassification
model = TokenClassification.from_config({"model.backbone": "aido_protein_16b", "model.n_classes": 3}).eval()
transformed_batch = model.transform({"sequences": ["HELLQ", "WRLD"]})
logits = model(transformed_batch)
print(logits)
print(torch.argmax(logits, dim=-1))
```
#### Regression
```python
from modelgenerator.tasks import SequenceRegression
model = SequenceRegression.from_config({"model.backbone": "aido_protein_16b"}).eval()
transformed_batch = model.transform({"sequences": ["HELLQ", "WRLD"]})
logits = model(transformed_batch)
print(logits)
```
# Citation
Please cite AIDO.Protein using the following BibTex code:
```
@inproceedings{sun_mixture_2024,
title = {Mixture of Experts Enable Efficient and Effective Protein Understanding and Design},
url = {https://www.biorxiv.org/content/10.1101/2024.11.29.625425v1},
doi = {10.1101/2024.11.29.625425},
publisher = {bioRxiv},
author = {Sun, Ning and Zou, Shuxian and Tao, Tianhua and Mahbub, Sazan and Li, Dian and Zhuang, Yonghao and Wang, Hongyi and Cheng, Xingyi and Song, Le and Xing, Eric P.},
year = {2024},
booktitle={NeurIPS 2024 Workshop on AI for New Drug Modalities},
}
``` |