metadata
language:
- gl
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Medium Galician
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 gl
type: mozilla-foundation/common_voice_11_0
config: gl
split: test
args: gl
metrics:
- name: Wer
type: wer
value: 8.41678391128031
Whisper Medium Galician
This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0 gl dataset. It achieves the following results on the evaluation set:
- Loss: 0.2864
- Wer: 8.4168
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0074 | 6.01 | 1000 | 0.2564 | 8.8927 |
0.0006 | 12.03 | 2000 | 0.2864 | 8.4168 |
0.0003 | 19.01 | 3000 | 0.3043 | 8.5078 |
0.0002 | 25.02 | 4000 | 0.3145 | 8.4913 |
0.0002 | 32.01 | 5000 | 0.3189 | 8.4706 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2