|
import openai |
|
import numpy as np |
|
from tempfile import NamedTemporaryFile |
|
import copy |
|
import shapely |
|
from shapely.geometry import * |
|
from shapely.affinity import * |
|
from omegaconf import OmegaConf |
|
from moviepy.editor import ImageSequenceClip |
|
import gradio as gr |
|
|
|
|
|
from consts import ALL_BLOCKS, ALL_BOWLS |
|
from md_logger import MarkdownLogger |
|
|
|
import numpy as np |
|
import os |
|
import hydra |
|
import random |
|
|
|
import re |
|
import openai |
|
import IPython |
|
import time |
|
import pybullet as p |
|
import traceback |
|
from datetime import datetime |
|
from pprint import pprint |
|
import cv2 |
|
import re |
|
import random |
|
import json |
|
|
|
from gensim.agent import Agent |
|
from gensim.critic import Critic |
|
from gensim.sim_runner import SimulationRunner |
|
from gensim.memory import Memory |
|
from gensim.utils import set_gpt_model, clear_messages |
|
|
|
class DemoRunner: |
|
|
|
def __init__(self): |
|
self._env = None |
|
|
|
def setup(self, api_key): |
|
openai.api_key = api_key |
|
cfg['model_output_dir'] = 'temp' |
|
cfg['prompt_folder'] = 'topdown_task_generation_prompt_simple_singleprompt' |
|
set_gpt_model(cfg['gpt_model']) |
|
cfg['load_memory'] = True |
|
cfg['task_description_candidate_num'] = 10 |
|
cfg['record']['save_video'] = True |
|
memory = Memory(cfg) |
|
agent = Agent(cfg, memory) |
|
critic = Critic(cfg, memory) |
|
self.simulation_runner = SimulationRunner(cfg, agent, critic, memory) |
|
|
|
info = '### Build' |
|
img = np.zeros((720, 640, 0)) |
|
|
|
return info, img |
|
|
|
def run(self, instruction): |
|
cfg['target_task_name'] = instruction |
|
|
|
self._env.cache_video = [] |
|
self._md_logger.clear() |
|
|
|
try: |
|
self.simulation_runner.task_creation() |
|
self.simulation_runner.simulate_task() |
|
except Exception as e: |
|
return f'Error: {e}', None, None |
|
|
|
video_file_name = None |
|
if self._env.cache_video: |
|
rendered_clip = ImageSequenceClip(self._env.cache_video, fps=25) |
|
video_file_name = NamedTemporaryFile(suffix='.mp4').name |
|
rendered_clip.write_videofile(video_file_name, fps=25) |
|
|
|
return self.simulation_runner.chat_log, self.simulation_runner.env.curr_video, video_file_name |
|
|
|
|
|
def setup(api_key): |
|
if not api_key: |
|
return 'Please enter your OpenAI API key!', None, None |
|
|
|
demo_runner = DemoRunner() |
|
|
|
info, img = demo_runner.setup(api_key) |
|
return info, img, demo_runner |
|
|
|
|
|
def run(instruction, demo_runner): |
|
if demo_runner is None: |
|
return 'Please run setup first!', None, None |
|
return demo_runner.run(instruction) |
|
|
|
|
|
if __name__ == '__main__': |
|
with open('README.md', 'r') as f: |
|
for _ in range(12): |
|
next(f) |
|
readme_text = f.read() |
|
|
|
with gr.Blocks() as demo: |
|
state = gr.State(None) |
|
|
|
gr.Markdown(readme_text) |
|
gr.Markdown('# Interactive Demo') |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
inp_api_key = gr.Textbox(label='OpenAI API Key (this is not stored anywhere)', lines=1) |
|
|
|
btn_setup = gr.Button("Setup/Reset Simulation") |
|
info_setup = gr.Markdown(label='Setup Info') |
|
with gr.Column(): |
|
img_setup = gr.Image(label='Current Simulation') |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
inp_instruction = gr.Textbox(label='Task Name', lines=1) |
|
btn_run = gr.Button("Run (this may take 30+ seconds)") |
|
info_run = gr.Markdown(label='Generated Code') |
|
with gr.Column(): |
|
video_run = gr.Video(label='Video of Last Instruction') |
|
|
|
btn_setup.click( |
|
setup, |
|
inputs=[inp_api_key], |
|
outputs=[info_setup, img_setup, state] |
|
) |
|
btn_run.click( |
|
run, |
|
inputs=[inp_instruction, state], |
|
outputs=[info_run, img_setup, video_run] |
|
) |
|
|
|
demo.queue().launch(show_error=True) |