metadata
license: other
datasets:
- ehartford/wizard_vicuna_70k_unfiltered
Overview
Fine-tuned Llama-2 7B with an uncensored/unfiltered Wizard-Vicuna conversation dataset ehartford/wizard_vicuna_70k_unfiltered. Used QLoRA for fine-tuning. Trained for one epoch on a 24GB GPU (NVIDIA A10G) instance, took ~19 hours to train.
Prompt style
The model was trained with the following prompt style:
### HUMAN:
Hello
### RESPONSE:
Hi, how are you?
### HUMAN:
I'm fine.
### RESPONSE:
How can I help you?
...
Training code
Code used to train the model is available here.
To reproduce the results:
git clone https://github.com/georgesung/llm_qlora
cd llm_qlora
pip install -r requirements.txt
python train.py configs/llama2_7b_chat_uncensored.yaml