geshijoker's picture
Update README.md
5577f74 verified
metadata
library_name: transformers
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
  - llama-factory
  - full
  - generated_from_trainer
model-index:
  - name: sft_full
    results: []

sft_full

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the healthcaremagic dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7460

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 512
  • total_eval_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
1.2093 2.8429 500 1.7462

Evaluation results

Name Checkpoint Rouge1 RougeL Meteor Bert Score
baseline instruct model Meta-Llama-3-8B-Instruct 0.254 0.128 0.222 0.747
full fientune from inst sft_llama3_instruct_full 0.315 0.189 0.238 0.782
lora sft from inst sft_llama3_instruct_lora_all 0.271 0.143 0.194 0.774
lora sft from base sft_llama3_lora_all 0.239 0.113 0.211 0.735
qlora sft from inst sft_llama3_instruct_qlora_all 0.137 0.071 0.102 0.679
qlora sft from base sft_llama3_qlora_all 0.192 0.090 0.159 0.718

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.3