t5-small-herblabels

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4823
  • Rouge1: 3.0759
  • Rouge2: 1.0495
  • Rougel: 3.0758
  • Rougelsum: 3.0431
  • Gen Len: 18.9716

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 264 1.6010 2.4276 0.5658 2.3546 2.3099 18.9091
2.5052 2.0 528 1.0237 2.9016 0.3395 2.8221 2.783 18.9673
2.5052 3.0 792 0.7793 2.962 0.3091 2.9375 2.8786 18.9588
1.1552 4.0 1056 0.6530 2.98 0.4375 2.9584 2.8711 18.9588
1.1552 5.0 1320 0.5863 3.0023 0.5882 2.987 2.9155 18.9588
0.8659 6.0 1584 0.5428 3.0576 0.8019 3.0494 2.9989 18.9716
0.8659 7.0 1848 0.5145 3.0808 0.9476 3.0719 3.0237 18.9716
0.747 8.0 2112 0.4962 3.0748 1.0032 3.0683 3.0359 18.9716
0.747 9.0 2376 0.4856 3.0702 1.0196 3.0665 3.0328 18.9716
0.6987 10.0 2640 0.4823 3.0759 1.0495 3.0758 3.0431 18.9716

Framework versions

  • Transformers 4.12.5
  • Pytorch 1.10.0
  • Datasets 1.16.1
  • Tokenizers 0.10.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.