ghassenhannachi's picture
End of training
4f70019
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.83

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9405
  • Accuracy: 0.83

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1782 1.0 113 2.0403 0.46
1.487 2.0 226 1.3902 0.64
1.1634 3.0 339 1.0882 0.71
0.9874 4.0 452 0.9260 0.68
0.7754 5.0 565 0.7265 0.8
0.4512 6.0 678 0.6141 0.84
0.4947 7.0 791 0.8277 0.78
0.1896 8.0 904 0.7220 0.81
0.2142 9.0 1017 0.6393 0.85
0.0413 10.0 1130 0.8113 0.82
0.0105 11.0 1243 0.7368 0.82
0.1392 12.0 1356 0.8139 0.85
0.0051 13.0 1469 0.7893 0.86
0.0041 14.0 1582 0.8515 0.83
0.0041 15.0 1695 0.7707 0.85
0.0033 16.0 1808 0.8931 0.84
0.0772 17.0 1921 0.8411 0.86
0.0028 18.0 2034 0.8884 0.83
0.0025 19.0 2147 0.9094 0.84
0.0027 20.0 2260 0.9405 0.83

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0