File size: 2,102 Bytes
c5ef90c 986f28b c5ef90c 986f28b c5ef90c 53ee41e dc3b3f5 c5ef90c 986f28b dc3b3f5 986f28b c5ef90c 53ee41e dc3b3f5 c5ef90c 53ee41e 986f28b c5ef90c 986f28b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: cc-by-nc-sa-4.0
base_model: ElnaggarLab/ankh-base
tags:
- generated_from_trainer
model-index:
- name: TooT-PLM-P2S
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TooT-PLM-P2S
This model is a fine-tuned version of [ElnaggarLab/ankh-base](https://huggingface.co/ElnaggarLab/ankh-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1575
- Q3 Accuracy: 0.5314
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 7
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Q3 Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|
| 0.6057 | 1.0 | 318 | 0.2338 | 0.4211 |
| 0.214 | 2.0 | 636 | 0.1712 | 0.6755 |
| 0.2068 | 3.0 | 954 | 0.1697 | 0.6628 |
| 0.2178 | 4.0 | 1272 | 0.1755 | 0.3646 |
| 0.1815 | 5.0 | 1590 | 0.1678 | 0.6628 |
| 0.1768 | 6.0 | 1908 | 0.1667 | 0.6628 |
| 0.1682 | 7.0 | 2226 | 0.1650 | 0.6628 |
| 0.1626 | 8.0 | 2544 | 0.1693 | 0.6527 |
| 0.1609 | 9.0 | 2862 | 0.1594 | 0.6566 |
| 0.1577 | 10.0 | 3180 | 0.1575 | 0.5314 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0
- Datasets 2.14.5
- Tokenizers 0.14.1
|