swin-tiny-patch4-window7-224-finetuned-flower-classifier

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2362
  • Accuracy: 0.9339

Model description

This model was created by importing the dataset of the photos of flowers into Google Colab from kaggle here: https://www.kaggle.com/datasets/l3llff/flowers. I then used the image classification tutorial here: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb

obtaining the following notebook:

https://colab.research.google.com/drive/1bapCEz4vkDd16Ax9jb5oHGa85PeuyZVW?usp=sharing

The possible classified flowers are: 'common_daisy', 'rose', 'california_poppy', 'iris', 'astilbe', 'carnation', 'tulip', 'sunflower', 'coreopsis', 'magnolia', 'water_lily', 'bellflower', 'daffodil', 'calendula', 'dandelion', 'black_eyed_susan'

Flower example:

flower

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.365 0.99 110 0.2362 0.9339

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results