SentenceTransformer based on distilbert/distilbert-base-uncased

This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: distilbert/distilbert-base-uncased
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'T ENGINE TRANS TOP LAT 90 Deg Front 2025 U717 G-S',
    'T R F ACTIVE VENT SQUIB VOLT 90 Deg Front 2021 P702 VOLTS',
    'T ENGINE TRANS TOP LAT 30 Deg Front Angular Left 2020 P558 G-S',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.4518
spearman_cosine 0.4762
pearson_manhattan 0.4253
spearman_manhattan 0.4638
pearson_euclidean 0.4262
spearman_euclidean 0.4652
pearson_dot 0.3898
spearman_dot 0.374
pearson_max 0.4518
spearman_max 0.4762

Semantic Similarity

Metric Value
pearson_cosine 0.4412
spearman_cosine 0.4671
pearson_manhattan 0.4156
spearman_manhattan 0.456
pearson_euclidean 0.4167
spearman_euclidean 0.4575
pearson_dot 0.3753
spearman_dot 0.3629
pearson_max 0.4412
spearman_max 0.4671

Training Details

Training Dataset

Unnamed Dataset

  • Size: 8,081,275 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 23 tokens
    • mean: 31.48 tokens
    • max: 40 tokens
    • min: 16 tokens
    • mean: 30.06 tokens
    • max: 55 tokens
    • min: 0.0
    • mean: 0.44
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    T L F DUMMY PELVIS VERT Dynamic Seat Sled Test 2025 U718 G-S T SCS R2 HY REF 059 R C PLR REF Y SM LAT 90 Deg / Left Side Decel-4g 2020 CX483 G-S 0.21129386503072142
    T L F DUMMY PELVIS VERT Dynamic Seat Sled Test 2025 U718 G-S T R F DUMMY PELVIS VERT 75 Deg Oblique Right Side 10 in. Pole 2015 P552 G-S 0.4972955033248179
    T L F DUMMY PELVIS VERT Dynamic Seat Sled Test 2025 U718 G-S T SCS L1 HY REF 053 L B PLR REF Y SM LAT 90 Deg Front Bumper Override 2021 CX727 G-S 0.5701051768787058
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,726,581 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 22 tokens
    • mean: 25.0 tokens
    • max: 30 tokens
    • min: 16 tokens
    • mean: 31.04 tokens
    • max: 53 tokens
    • min: 0.0
    • mean: 0.44
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    T R F ADAPTIVE TETHER VENT SQUIB VOLT 30 Deg Front Angular Right 20xx GENERIC VOLTS T L F DUMMY T12 LONG 27 Deg Crabbed Left Side NHTSA 214 MDB to vehicle 2015 P552 G-S 0.6835618484879796
    T R F ADAPTIVE TETHER VENT SQUIB VOLT 30 Deg Front Angular Right 20xx GENERIC VOLTS T L F DUMMY R FEMUR LONG 90 Deg Front 2022 U553 G-S 0.666531064739
    T R F ADAPTIVE TETHER VENT SQUIB VOLT 30 Deg Front Angular Right 20xx GENERIC VOLTS T R F DUMMY NECK UPPER MZ LOAD 90 Deg Front 2019 P375ICA IN-LBS 0.46391834212079874
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 3e-05
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 4
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: False
  • include_tokens_per_second: False
  • neftune_noise_alpha: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss sts-dev_spearman_cosine
0.0317 1000 6.3069 - -
0.0634 2000 6.1793 - -
0.0950 3000 6.1607 - -
0.1267 4000 6.1512 - -
0.1584 5000 6.1456 - -
0.1901 6000 6.1419 - -
0.2218 7000 6.1398 - -
0.2534 8000 6.1377 - -
0.2851 9000 6.1352 - -
0.3168 10000 6.1338 - -
0.3485 11000 6.1332 - -
0.3801 12000 6.1309 - -
0.4118 13000 6.1315 - -
0.4435 14000 6.1283 - -
0.4752 15000 6.129 - -
0.5069 16000 6.1271 - -
0.5385 17000 6.1265 - -
0.5702 18000 6.1238 - -
0.6019 19000 6.1234 - -
0.6336 20000 6.1225 - -
0.6653 21000 6.1216 - -
0.6969 22000 6.1196 - -
0.7286 23000 6.1198 - -
0.7603 24000 6.1178 - -
0.7920 25000 6.117 - -
0.8236 26000 6.1167 - -
0.8553 27000 6.1165 - -
0.8870 28000 6.1149 - -
0.9187 29000 6.1146 - -
0.9504 30000 6.113 - -
0.9820 31000 6.1143 - -
1.0 31567 - 6.1150 0.4829
1.0137 32000 6.1115 - -
1.0454 33000 6.111 - -
1.0771 34000 6.1091 - -
1.1088 35000 6.1094 - -
1.1404 36000 6.1078 - -
1.1721 37000 6.1095 - -
1.2038 38000 6.106 - -
1.2355 39000 6.1071 - -
1.2671 40000 6.1073 - -
1.2988 41000 6.1064 - -
1.3305 42000 6.1047 - -
1.3622 43000 6.1054 - -
1.3939 44000 6.1048 - -
1.4255 45000 6.1053 - -
1.4572 46000 6.1058 - -
1.4889 47000 6.1037 - -
1.5206 48000 6.1041 - -
1.5523 49000 6.1023 - -
1.5839 50000 6.1018 - -
1.6156 51000 6.104 - -
1.6473 52000 6.1004 - -
1.6790 53000 6.1027 - -
1.7106 54000 6.1017 - -
1.7423 55000 6.1011 - -
1.7740 56000 6.1002 - -
1.8057 57000 6.0994 - -
1.8374 58000 6.0985 - -
1.8690 59000 6.0986 - -
1.9007 60000 6.1006 - -
1.9324 61000 6.0983 - -
1.9641 62000 6.0983 - -
1.9958 63000 6.0973 - -
2.0 63134 - 6.1193 0.4828
2.0274 64000 6.0943 - -
2.0591 65000 6.0941 - -
2.0908 66000 6.0936 - -
2.1225 67000 6.0909 - -
2.1541 68000 6.0925 - -
2.1858 69000 6.0932 - -
2.2175 70000 6.0939 - -
2.2492 71000 6.0919 - -
2.2809 72000 6.0932 - -
2.3125 73000 6.0916 - -
2.3442 74000 6.0919 - -
2.3759 75000 6.0919 - -
2.4076 76000 6.0911 - -
2.4393 77000 6.0924 - -
2.4709 78000 6.0911 - -
2.5026 79000 6.0922 - -
2.5343 80000 6.0926 - -
2.5660 81000 6.0911 - -
2.5976 82000 6.0897 - -
2.6293 83000 6.0922 - -
2.6610 84000 6.0908 - -
2.6927 85000 6.0884 - -
2.7244 86000 6.0907 - -
2.7560 87000 6.0904 - -
2.7877 88000 6.0881 - -
2.8194 89000 6.0902 - -
2.8511 90000 6.088 - -
2.8828 91000 6.0888 - -
2.9144 92000 6.0884 - -
2.9461 93000 6.0881 - -
2.9778 94000 6.0896 - -
3.0 94701 - 6.1225 0.4788
3.0095 95000 6.0857 - -
3.0412 96000 6.0838 - -
3.0728 97000 6.0843 - -
3.1045 98000 6.0865 - -
3.1362 99000 6.0827 - -
3.1679 100000 6.0836 - -
3.1995 101000 6.0837 - -
3.2312 102000 6.0836 - -
3.2629 103000 6.0837 - -
3.2946 104000 6.084 - -
3.3263 105000 6.0836 - -
3.3579 106000 6.0808 - -
3.3896 107000 6.0821 - -
3.4213 108000 6.0817 - -
3.4530 109000 6.082 - -
3.4847 110000 6.083 - -
3.5163 111000 6.0829 - -
3.5480 112000 6.0832 - -
3.5797 113000 6.0829 - -
3.6114 114000 6.0837 - -
3.6430 115000 6.082 - -
3.6747 116000 6.0823 - -
3.7064 117000 6.082 - -
3.7381 118000 6.0833 - -
3.7698 119000 6.0831 - -
3.8014 120000 6.0814 - -
3.8331 121000 6.0813 - -
3.8648 122000 6.0797 - -
3.8965 123000 6.0793 - -
3.9282 124000 6.0818 - -
3.9598 125000 6.0806 - -
3.9915 126000 6.08 - -
4.0 126268 - 6.1266 0.4671

Framework Versions

  • Python: 3.10.6
  • Sentence Transformers: 3.0.0
  • Transformers: 4.35.0
  • PyTorch: 2.1.0a0+4136153
  • Accelerate: 0.30.1
  • Datasets: 2.14.1
  • Tokenizers: 0.14.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
16
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gkudirka/crash_encoder2-sts

Finetuned
(7171)
this model

Evaluation results