gokulraj's picture
End of training
75dc215 verified
metadata
language:
  - ta
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - tamilcustomvoice
metrics:
  - wer
model-index:
  - name: Whisper tiny custom
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: custom dataset
          type: tamilcustomvoice
        metrics:
          - name: Wer
            type: wer
            value: 7.28476821192053

Whisper tiny custom

This model is a fine-tuned version of openai/whisper-medium on the custom dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0315
  • Wer Ortho: 9.2105
  • Wer: 7.2848

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
1.6536 2.5 50 0.4681 57.8947 50.9934
0.0732 5.0 100 0.0820 19.7368 15.2318
0.0076 7.5 150 0.0396 9.2105 7.9470
0.0013 10.0 200 0.0336 9.2105 8.6093
0.0007 12.5 250 0.0356 7.8947 5.9603
0.0005 15.0 300 0.0339 7.8947 5.9603
0.0004 17.5 350 0.0326 7.8947 5.9603
0.0003 20.0 400 0.0323 7.8947 5.9603
0.0003 22.5 450 0.0320 9.2105 7.2848
0.0002 25.0 500 0.0315 9.2105 7.2848

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1