HBERTv1_48_L2_H64_A2_massive

This model is a fine-tuned version of gokuls/HBERTv1_48_L2_H64_A2 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1655
  • Accuracy: 0.4009

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.9873 1.0 180 3.7924 0.1190
3.6056 2.0 360 3.4147 0.1210
3.3391 3.0 540 3.2008 0.1422
3.1518 4.0 720 3.0285 0.1977
2.9855 5.0 900 2.8620 0.2356
2.8224 6.0 1080 2.7059 0.2671
2.6751 7.0 1260 2.5728 0.2986
2.5558 8.0 1440 2.4704 0.3399
2.4664 9.0 1620 2.3848 0.3566
2.3814 10.0 1800 2.3129 0.3719
2.3131 11.0 1980 2.2572 0.3792
2.2662 12.0 2160 2.2149 0.3920
2.2201 13.0 2340 2.1830 0.3935
2.1957 14.0 2520 2.1655 0.4009
2.1831 15.0 2700 2.1585 0.3994

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/HBERTv1_48_L2_H64_A2_massive

Finetuned
(2)
this model

Evaluation results