HBERTv1_48_L4_H512_A8_massive

This model is a fine-tuned version of gokuls/HBERTv1_48_L4_H512_A8 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7982
  • Accuracy: 0.8628

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2635 1.0 180 1.0540 0.7378
0.852 2.0 360 0.7276 0.8067
0.5577 3.0 540 0.6679 0.8224
0.3964 4.0 720 0.6441 0.8352
0.28 5.0 900 0.6340 0.8441
0.2055 6.0 1080 0.6703 0.8470
0.1508 7.0 1260 0.6997 0.8465
0.1185 8.0 1440 0.7411 0.8480
0.0889 9.0 1620 0.7219 0.8519
0.0652 10.0 1800 0.7566 0.8613
0.0477 11.0 1980 0.7694 0.8564
0.0331 12.0 2160 0.7993 0.8578
0.0247 13.0 2340 0.7982 0.8628
0.0174 14.0 2520 0.8348 0.8554
0.0141 15.0 2700 0.8415 0.8583

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
47
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for gokuls/HBERTv1_48_L4_H512_A8_massive

Finetuned
(2)
this model

Evaluation results