gokuls's picture
End of training
f6a43f7
metadata
base_model: gokuls/HBERTv1_48_L6_H256_A4
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: HBERTv1_48_L6_H256_A4_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8460403344810624

HBERTv1_48_L6_H256_A4_massive

This model is a fine-tuned version of gokuls/HBERTv1_48_L6_H256_A4 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7233
  • Accuracy: 0.8460

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.3254 1.0 180 2.3694 0.4638
1.8706 2.0 360 1.3999 0.6616
1.2107 3.0 540 1.0206 0.7378
0.8953 4.0 720 0.8675 0.7821
0.6964 5.0 900 0.7948 0.7973
0.5749 6.0 1080 0.7426 0.8165
0.4668 7.0 1260 0.7449 0.8180
0.3947 8.0 1440 0.7142 0.8283
0.3345 9.0 1620 0.7030 0.8406
0.2859 10.0 1800 0.7111 0.8411
0.2418 11.0 1980 0.7323 0.8392
0.2145 12.0 2160 0.7269 0.8392
0.1885 13.0 2340 0.7233 0.8460
0.17 14.0 2520 0.7294 0.8411
0.1579 15.0 2700 0.7331 0.8436

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0