gokuls's picture
End of training
2e0ac87
metadata
base_model: gokuls/HBERTv1_48_L8_H128_A2
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: HBERTv1_48_L8_H128_A2_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7732415150024594

HBERTv1_48_L8_H128_A2_massive

This model is a fine-tuned version of gokuls/HBERTv1_48_L8_H128_A2 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9536
  • Accuracy: 0.7732

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.6754 1.0 180 3.1304 0.2066
2.7764 2.0 360 2.3806 0.4191
2.1831 3.0 540 1.9090 0.5312
1.7788 4.0 720 1.5949 0.6016
1.4936 5.0 900 1.4032 0.6513
1.2858 6.0 1080 1.2747 0.6847
1.1232 7.0 1260 1.1651 0.7172
1.0058 8.0 1440 1.0993 0.7295
0.9035 9.0 1620 1.0379 0.7486
0.8245 10.0 1800 1.0164 0.7634
0.7634 11.0 1980 0.9935 0.7614
0.7116 12.0 2160 0.9657 0.7708
0.6763 13.0 2340 0.9624 0.7708
0.6477 14.0 2520 0.9536 0.7732
0.6258 15.0 2700 0.9487 0.7732

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0