gokuls's picture
End of training
14ce296
metadata
license: apache-2.0
base_model: google/bert_uncased_L-2_H-512_A-8
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: bert_uncased_L-2_H-512_A-8_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8740777176586325

bert_uncased_L-2_H-512_A-8_massive

This model is a fine-tuned version of google/bert_uncased_L-2_H-512_A-8 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5162
  • Accuracy: 0.8741

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.9188 1.0 180 1.8187 0.6085
1.5237 2.0 360 1.0972 0.7585
0.9995 3.0 540 0.8257 0.7978
0.7371 4.0 720 0.6883 0.8318
0.5734 5.0 900 0.6198 0.8455
0.4599 6.0 1080 0.5870 0.8569
0.3835 7.0 1260 0.5654 0.8574
0.3262 8.0 1440 0.5414 0.8652
0.279 9.0 1620 0.5282 0.8697
0.2435 10.0 1800 0.5281 0.8677
0.2199 11.0 1980 0.5156 0.8697
0.1999 12.0 2160 0.5162 0.8741
0.1824 13.0 2340 0.5224 0.8736
0.1712 14.0 2520 0.5223 0.8731
0.1627 15.0 2700 0.5206 0.8716

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1