gokuls's picture
End of training
3d60f7c
---
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: hBERTv1_new_pretrain_mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.6838235294117647
- name: F1
type: f1
value: 0.8122270742358079
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hBERTv1_new_pretrain_mrpc
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6018
- Accuracy: 0.6838
- F1: 0.8122
- Combined Score: 0.7480
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.6855 | 1.0 | 29 | 0.6255 | 0.6838 | 0.8122 | 0.7480 |
| 0.647 | 2.0 | 58 | 0.6536 | 0.6838 | 0.8122 | 0.7480 |
| 0.6336 | 3.0 | 87 | 0.6537 | 0.6838 | 0.8122 | 0.7480 |
| 0.6007 | 4.0 | 116 | 0.6018 | 0.6838 | 0.8122 | 0.7480 |
| 0.5196 | 5.0 | 145 | 0.6852 | 0.6544 | 0.7273 | 0.6908 |
| 0.3703 | 6.0 | 174 | 0.7167 | 0.6838 | 0.7709 | 0.7273 |
| 0.2697 | 7.0 | 203 | 0.9072 | 0.7010 | 0.7953 | 0.7481 |
| 0.1997 | 8.0 | 232 | 1.0467 | 0.6765 | 0.7651 | 0.7208 |
| 0.1629 | 9.0 | 261 | 1.0809 | 0.6593 | 0.7495 | 0.7044 |
### Framework versions
- Transformers 4.29.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3