hBERTv1_no_pretrain_wnli

This model is a fine-tuned version of on the GLUE WNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6862
  • Accuracy: 0.5634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8468 1.0 7 0.6988 0.5634
0.733 2.0 14 0.8370 0.4366
0.7422 3.0 21 0.7440 0.4366
0.7016 4.0 28 0.7514 0.4366
0.7085 5.0 35 0.7207 0.4366
0.7291 6.0 42 0.6975 0.5634
0.7123 7.0 49 0.6938 0.4366
0.703 8.0 56 0.7073 0.4366
0.714 9.0 63 0.7375 0.4366
0.7049 10.0 70 0.7098 0.4366
0.7036 11.0 77 0.6951 0.4366
0.7061 12.0 84 0.6862 0.5634
0.7034 13.0 91 0.7034 0.4366
0.7052 14.0 98 0.6955 0.4366
0.7028 15.0 105 0.7138 0.4366
0.7064 16.0 112 0.6864 0.5634
0.6953 17.0 119 0.6956 0.4507

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
52
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train gokuls/hBERTv1_no_pretrain_wnli

Evaluation results