hBERTv2_new_pretrain_48_emb_com_stsb

This model is a fine-tuned version of gokuls/bert_12_layer_model_v2_complete_training_new_emb_compress_48 on the GLUE STSB dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0889
  • Pearson: 0.3123
  • Spearmanr: 0.3073
  • Combined Score: 0.3098

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Pearson Spearmanr Combined Score
2.398 1.0 45 3.0621 0.0972 0.1007 0.0990
2.0392 2.0 90 2.3674 0.1058 0.1011 0.1034
1.967 3.0 135 2.2296 0.1449 0.1432 0.1441
1.8176 4.0 180 2.6036 0.2055 0.2169 0.2112
1.6744 5.0 225 2.2119 0.2516 0.2534 0.2525
1.4727 6.0 270 2.0889 0.3123 0.3073 0.3098
1.1852 7.0 315 2.6372 0.3609 0.3543 0.3576
0.9895 8.0 360 2.5881 0.3312 0.3322 0.3317
0.8254 9.0 405 2.1746 0.3991 0.3974 0.3983
0.6759 10.0 450 2.7671 0.3693 0.3663 0.3678
0.558 11.0 495 2.5954 0.3967 0.3942 0.3955

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train gokuls/hBERTv2_new_pretrain_48_emb_com_stsb

Evaluation results