gokuls's picture
End of training
3916841
metadata
language:
  - en
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: hBERTv2_new_pretrain_48_emb_com_wnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE WNLI
          type: glue
          config: wnli
          split: validation
          args: wnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5633802816901409

hBERTv2_new_pretrain_48_emb_com_wnli

This model is a fine-tuned version of gokuls/bert_12_layer_model_v2_complete_training_new_emb_compress_48 on the GLUE WNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6868
  • Accuracy: 0.5634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9415 1.0 5 0.7306 0.4366
0.7146 2.0 10 0.7870 0.4366
0.7207 3.0 15 0.7136 0.4225
0.6988 4.0 20 0.7277 0.4366
0.7058 5.0 25 0.7434 0.4366
0.7171 6.0 30 0.6963 0.4366
0.7007 7.0 35 0.6897 0.5634
0.7085 8.0 40 0.6900 0.5634
0.7282 9.0 45 0.6929 0.5634
0.695 10.0 50 0.6970 0.4366
0.6939 11.0 55 0.6868 0.5634
0.6955 12.0 60 0.6904 0.5634
0.6934 13.0 65 0.7015 0.4366
0.6974 14.0 70 0.6964 0.4366
0.695 15.0 75 0.6904 0.5634
0.7003 16.0 80 0.6981 0.4366

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.12.0
  • Tokenizers 0.13.3