hubert-base-ls960-speech-commands-h

This model is a fine-tuned version of facebook/hubert-base-ls960 on the speech_commands dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3148
  • Accuracy: 0.7594

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.743 1.0 824 3.4107 0.1781
2.3383 2.0 1648 3.4632 0.1862
2.2702 3.0 2472 3.5701 0.0787
2.3059 4.0 3296 3.5742 0.0971
2.2574 5.0 4120 3.5457 0.1493
2.0617 6.0 4944 2.8490 0.3453
2.0289 7.0 5768 2.7607 0.3215
1.7807 8.0 6592 2.5721 0.4681
1.8188 9.0 7416 2.5625 0.5301
1.3812 10.0 8240 2.4258 0.6942
1.3136 11.0 9064 2.2087 0.6884
1.2867 12.0 9888 1.8347 0.7221
1.1036 13.0 10712 1.6731 0.7383
0.9534 14.0 11536 1.8732 0.7307
0.9289 15.0 12360 1.5742 0.7415
1.0973 16.0 13184 1.3693 0.7365
0.989 17.0 14008 1.2718 0.7455
0.8876 18.0 14832 1.3148 0.7594
0.814 19.0 15656 1.2231 0.7558
0.9899 20.0 16480 1.2349 0.7522

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
91.1M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for gokuls/hubert-base-ls960-speech-commands-h

Finetuned
(75)
this model

Dataset used to train gokuls/hubert-base-ls960-speech-commands-h

Evaluation results