whisper-base.en-fsc / README.md
gokuls's picture
End of training
668a578 verified
|
raw
history blame
2.7 kB
metadata
license: apache-2.0
base_model: openai/whisper-base.en
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: whisper-base.en-fsc
    results: []

whisper-base.en-fsc

This model is a fine-tuned version of openai/whisper-base.en on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0278
  • Accuracy: 0.5630

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 192
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9972 263 3.7447 0.0962
No log 1.9981 527 2.8087 0.3060
No log 2.9991 791 2.3083 0.4062
2.9232 4.0 1055 2.0094 0.4940
2.9232 4.9972 1318 1.9099 0.5321
2.9232 5.9981 1582 1.9257 0.5479
2.9232 6.9991 1846 2.0132 0.5479
0.8199 8.0 2110 2.1486 0.5444
0.8199 8.9972 2373 2.2976 0.5440
0.8199 9.9981 2637 2.4131 0.5453
0.8199 10.9991 2901 2.5031 0.5523
0.1503 12.0 3165 2.6273 0.5544
0.1503 12.9972 3428 2.7233 0.5581
0.1503 13.9981 3692 2.8470 0.5498
0.1503 14.9991 3956 2.8848 0.5589
0.0246 16.0 4220 2.9497 0.5605
0.0246 16.9972 4483 2.9992 0.5612
0.0246 17.9981 4747 3.0278 0.5630
0.0043 18.9991 5011 3.0502 0.5629
0.0043 19.9431 5260 3.0561 0.5629

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1