gokulsrinivasagan's picture
End of training
c4e3810 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: google/bert_uncased_L-2_H-256_A-4
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: bert_uncased_L-2_H-256_A-4_mrpc
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE MRPC
          type: glue
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7475490196078431
          - name: F1
            type: f1
            value: 0.835725677830941

bert_uncased_L-2_H-256_A-4_mrpc

This model is a fine-tuned version of google/bert_uncased_L-2_H-256_A-4 on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5344
  • Accuracy: 0.7475
  • F1: 0.8357
  • Combined Score: 0.7916

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.619 1.0 15 0.5956 0.6887 0.8146 0.7517
0.5893 2.0 30 0.5835 0.7010 0.8179 0.7594
0.5612 3.0 45 0.5597 0.7059 0.8171 0.7615
0.5397 4.0 60 0.5398 0.7377 0.8320 0.7849
0.5063 5.0 75 0.5358 0.7426 0.8336 0.7881
0.476 6.0 90 0.5344 0.7475 0.8357 0.7916
0.4361 7.0 105 0.5515 0.7451 0.8349 0.7900
0.4014 8.0 120 0.5508 0.75 0.8365 0.7933
0.3684 9.0 135 0.5901 0.7304 0.8254 0.7779
0.3396 10.0 150 0.5755 0.7426 0.8276 0.7851
0.3061 11.0 165 0.5943 0.75 0.8317 0.7908

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3