Whisper Large V2

This model is a fine-tuned version of openai/whisper-large-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2535
  • Wer: 8.9988

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 12
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Wer
0.6185 0.09 30 0.3181 12.1555
0.3243 0.19 60 0.2801 11.9994
0.3044 0.28 90 0.2689 11.9876
0.2843 0.38 120 0.2574 10.4270
0.2859 0.47 150 0.2427 12.1879
0.271 0.57 180 0.2374 14.0459
0.2584 0.66 210 0.2319 11.1690
0.2916 0.76 240 0.2302 13.6013
0.2781 0.85 270 0.2224 10.6832
0.2498 0.95 300 0.2244 10.2945
0.2033 1.04 330 0.2311 11.3045
0.1323 1.14 360 0.2268 10.9393
0.1322 1.23 390 0.2242 9.9912
0.1312 1.33 420 0.2267 14.3993
0.1392 1.42 450 0.2209 9.9352
0.1437 1.52 480 0.2146 10.0824
0.1299 1.61 510 0.2198 16.3516
0.1328 1.71 540 0.2161 10.0118
0.1425 1.8 570 0.2133 11.3280
0.1332 1.9 600 0.2137 10.4476
0.1354 1.99 630 0.2101 10.0324
0.0601 2.09 660 0.2241 9.2285
0.0557 2.18 690 0.2235 9.0548
0.0567 2.28 720 0.2239 9.5259
0.0583 2.37 750 0.2246 11.3575
0.0642 2.47 780 0.2241 9.7556
0.059 2.56 810 0.2256 10.1266
0.0596 2.66 840 0.2228 9.5318
0.0571 2.75 870 0.2206 12.1290
0.0581 2.85 900 0.2222 10.4240
0.063 2.94 930 0.2229 9.3551
0.0428 3.04 960 0.2313 9.8557
0.0237 3.13 990 0.2337 9.7261
0.0228 3.23 1020 0.2380 9.3433
0.022 3.32 1050 0.2403 9.6849
0.0235 3.42 1080 0.2342 9.5878
0.0206 3.51 1110 0.2341 9.0371
0.0205 3.61 1140 0.2391 9.2668
0.022 3.7 1170 0.2336 9.6496
0.0201 3.8 1200 0.2363 9.4876
0.0213 3.89 1230 0.2303 9.5819
0.0206 3.99 1260 0.2348 9.4670
0.0098 4.08 1290 0.2450 9.4729
0.0088 4.18 1320 0.2497 9.1461
0.0076 4.27 1350 0.2497 9.2815
0.0086 4.37 1380 0.2509 9.0901
0.0064 4.46 1410 0.2524 8.9164
0.0075 4.56 1440 0.2539 8.9340
0.0069 4.65 1470 0.2532 8.9870
0.0083 4.75 1500 0.2529 9.0135
0.0064 4.84 1530 0.2536 8.9605
0.0065 4.94 1560 0.2535 8.9988

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.0
Downloads last month
28
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for golesheed/whisper-3-dutch

Finetuned
(200)
this model