Whisper Large V2

This model is a fine-tuned version of openai/whisper-large-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2941
  • Wer: 9.7158

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 12
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Wer
0.6299 0.09 30 0.3564 16.3717
0.3398 0.19 60 0.3210 12.9819
0.3187 0.28 90 0.2997 19.9971
0.2773 0.38 120 0.2939 15.2908
0.2745 0.47 150 0.2780 15.0405
0.2677 0.57 180 0.2697 12.3840
0.2467 0.66 210 0.2698 13.6033
0.2467 0.76 240 0.2735 16.5749
0.2455 0.85 270 0.2639 12.0188
0.269 0.95 300 0.2597 13.3412
0.1851 1.04 330 0.2643 12.3428
0.1265 1.14 360 0.2561 13.4649
0.1377 1.23 390 0.2662 12.8081
0.134 1.33 420 0.2640 12.3310
0.1371 1.42 450 0.2630 11.8480
0.1307 1.52 480 0.2616 11.9187
0.1423 1.61 510 0.2535 11.3150
0.1406 1.71 540 0.2525 10.9675
0.1312 1.8 570 0.2483 13.9479
0.1214 1.9 600 0.2534 12.3192
0.1252 1.99 630 0.2531 11.7243
0.0657 2.09 660 0.2619 11.0558
0.0578 2.18 690 0.2698 12.2191
0.0548 2.28 720 0.2662 10.3667
0.0596 2.37 750 0.2685 12.3222
0.0573 2.47 780 0.2698 10.5581
0.0589 2.56 810 0.2661 11.7391
0.0554 2.66 840 0.2608 11.7332
0.0625 2.75 870 0.2622 10.7760
0.0586 2.85 900 0.2603 10.7201
0.0647 2.94 930 0.2576 10.5669
0.0486 3.04 960 0.2647 10.2518
0.0245 3.13 990 0.2749 10.6140
0.0256 3.23 1020 0.2707 10.2813
0.0242 3.32 1050 0.2724 11.6566
0.0225 3.42 1080 0.2699 10.6347
0.0205 3.51 1110 0.2748 10.0427
0.0217 3.61 1140 0.2747 10.0339
0.0216 3.7 1170 0.2775 9.9190
0.0222 3.8 1200 0.2770 10.2371
0.0204 3.89 1230 0.2722 10.1782
0.0185 3.99 1260 0.2725 9.7835
0.0111 4.08 1290 0.2834 9.8866
0.0085 4.18 1320 0.2854 9.7894
0.0082 4.27 1350 0.2868 9.7629
0.0075 4.37 1380 0.2906 9.7776
0.0079 4.46 1410 0.2918 9.7394
0.0071 4.56 1440 0.2902 9.6157
0.0076 4.65 1470 0.2921 9.5921
0.0071 4.75 1500 0.2940 9.5774
0.0069 4.84 1530 0.2936 9.7276
0.0071 4.94 1560 0.2941 9.7158

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for golesheed/whisper-4-dutch

Finetuned
(200)
this model