metadata
language:
- nl
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Large V2
results: []
Whisper Large V2
This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1506
- Wer: 5.1288
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4241 | 0.38 | 30 | 0.1816 | 7.9883 |
0.1734 | 0.75 | 60 | 0.1585 | 6.3247 |
0.1334 | 1.12 | 90 | 0.1560 | 5.9874 |
0.0787 | 1.5 | 120 | 0.1468 | 6.0718 |
0.0745 | 1.88 | 150 | 0.1465 | 7.3674 |
0.0512 | 2.25 | 180 | 0.1452 | 7.1297 |
0.0314 | 2.62 | 210 | 0.1405 | 5.4814 |
0.0321 | 3.0 | 240 | 0.1376 | 5.4125 |
0.0154 | 3.38 | 270 | 0.1469 | 5.2208 |
0.0144 | 3.75 | 300 | 0.1493 | 5.2515 |
0.011 | 4.12 | 330 | 0.1443 | 5.0905 |
0.0064 | 4.5 | 360 | 0.1502 | 5.1058 |
0.007 | 4.88 | 390 | 0.1506 | 5.1288 |
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0