gemma-7b-it-flax / README.md
BenjaminB's picture
BenjaminB HF staff
Update README.md
88e42fc verified
|
raw
history blame
1.94 kB
---
library_name: jax
tags:
- gemma_jax
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: >-
To access Gemma on Hugging Face, you’re required to review and agree to
Google’s usage license. To do this, please ensure you’re logged-in to Hugging
Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
pipeline_tag: text-generation
---
# Gemma Model Card
> [!IMPORTANT]
>
> This repository corresponds to the research Gemma repository in Jax. If you're looking for the transformers JAX implementation, visit [this page](https://huggingface.co/google/gemma-7b-it).
**Model Page**: [Gemma](https://ai.google.dev/gemma/docs)
This model card corresponds to the 7B instruct version of the Gemma model for usage with flax. For more information about the model, visit https://huggingface.co/google/gemma-7b-it.
**Resources and Technical Documentation**:
* [Responsible Generative AI Toolkit](https://ai.google.dev/responsible)
* [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma)
* [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335?version=gemma-2b-gg-hf)
**Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent)
**Authors**: Google
## Loading the model
To download the weights and tokenizer, run:
```python
from huggingface_hub import snapshot_download
local_dir = <PATH>
snapshot_download(repo_id="google/gemma-7b-it-flax", local_dir=local_dir)
```
Then download [this script](https://github.com/google-deepmind/gemma/blob/main/examples/sampling.py) from the [gemma GitHub repository](https://github.com/google-deepmind/gemma) and call `python sampling.py` with the `--path_checkpoint` and `--path_tokenizer` arguments pointing to your local download path.