griffio's picture
End of training
f3e57e8 verified
metadata
library_name: transformers
license: mit
base_model: microsoft/git-base
tags:
  - generated_from_trainer
datasets:
  - imagefolder
model-index:
  - name: git-base-one-entrance-dungeons-20
    results: []

git-base-one-entrance-dungeons-20

This model is a fine-tuned version of microsoft/git-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0115
  • Wer Score: 0.2812

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer Score
0.0112 0.6061 10 0.0108 0.2812
0.0094 1.2121 20 0.0105 0.25
0.0109 1.8182 30 0.0114 0.2656
0.0112 2.4242 40 0.0103 0.25
0.0114 3.0303 50 0.0108 0.2812
0.0107 3.6364 60 0.0113 0.2812
0.0119 4.2424 70 0.0108 0.2344
0.0121 4.8485 80 0.0106 0.2344
0.0115 5.4545 90 0.0112 0.25
0.0126 6.0606 100 0.0107 0.25
0.0118 6.6667 110 0.0119 0.25
0.0116 7.2727 120 0.0105 0.2188
0.0122 7.8788 130 0.0105 0.2656
0.0103 8.4848 140 0.0109 0.2812
0.0102 9.0909 150 0.0107 0.25
0.0099 9.6970 160 0.0118 0.25
0.0091 10.3030 170 0.0113 0.2656
0.0095 10.9091 180 0.0109 0.2656
0.0093 11.5152 190 0.0114 0.25
0.0088 12.1212 200 0.0119 0.2812
0.0091 12.7273 210 0.0123 0.2812
0.009 13.3333 220 0.0119 0.2969
0.0092 13.9394 230 0.0112 0.25
0.0084 14.5455 240 0.0116 0.2812
0.009 15.1515 250 0.0118 0.2969
0.0077 15.7576 260 0.0120 0.2656
0.008 16.3636 270 0.0116 0.2344
0.0079 16.9697 280 0.0115 0.2812
0.0077 17.5758 290 0.0115 0.2812
0.0079 18.1818 300 0.0116 0.2812
0.0084 18.7879 310 0.0115 0.2812
0.0085 19.3939 320 0.0115 0.2812

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1