DinoVdo is a fine-tuned version of DinoVdo-large-2025_01_27_45863-bs32_freeze. It achieves the following results on the test set:

  • Loss: 0.1236
  • F1 Micro: 0.8136
  • F1 Macro: 0.7060
  • Accuracy: 0.3071
Class F1 per class
Acropore_branched 0.9015
Acropore_digitised 0.6437
Acropore_sub_massive 0.3853
Acropore_tabular 0.9293
Algae_assembly 0.7615
Algae_drawn_up 0.4765
Algae_limestone 0.7542
Algae_sodding 0.8600
Atra/Leucospilota 0.8369
Bleached_coral 0.6405
Blurred 0.6294
Dead_coral 0.7340
Fish 0.7477
Homo_sapiens 0.7788
Human_object 0.7629
Living_coral 0.6290
Millepore 0.8251
No_acropore_encrusting 0.6364
No_acropore_foliaceous 0.8077
No_acropore_massive 0.7208
No_acropore_solitary 0.4468
No_acropore_sub_massive 0.6970
Rock 0.8818
Rubble 0.7686
Sand 0.9235
Sea_cucumber 0.8234
Sea_urchins 0.7079
Sponge 0.3861
Syringodium_isoetifolium 0.9720
Thalassodendron_ciliatum 0.9886
Useless 0.9745

Model description

DinoVdo is a model built on top of DinoVdo-large-2025_01_27_45863-bs32_freeze model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.

The source code for training the model can be found in this Git repository.


Intended uses & limitations

You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.


Training and evaluation data

Details on the number of images for each class are given in the following table:

Class train test val Total
Acropore_branched 1480 469 459 2408
Acropore_digitised 571 156 161 888
Acropore_sub_massive 150 52 41 243
Acropore_tabular 999 292 298 1589
Algae_assembly 2554 842 842 4238
Algae_drawn_up 367 130 123 620
Algae_limestone 1651 562 559 2772
Algae_sodding 3142 994 981 5117
Atra/Leucospilota 1084 349 359 1792
Bleached_coral 219 69 72 360
Blurred 191 68 61 320
Dead_coral 1980 648 636 3264
Fish 2018 661 642 3321
Homo_sapiens 161 63 58 282
Human_object 156 55 59 270
Living_coral 397 151 153 701
Millepore 386 127 124 637
No_acropore_encrusting 442 141 142 725
No_acropore_foliaceous 204 47 35 286
No_acropore_massive 1030 341 334 1705
No_acropore_solitary 202 55 46 303
No_acropore_sub_massive 1402 428 426 2256
Rock 4481 1495 1481 7457
Rubble 3092 1015 1016 5123
Sand 5839 1945 1935 9719
Sea_cucumber 1407 437 450 2294
Sea_urchins 328 110 107 545
Sponge 267 98 105 470
Syringodium_isoetifolium 1213 392 390 1995
Thalassodendron_ciliatum 781 262 260 1303
Useless 579 193 193 965

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • Number of Epochs: 91.0
  • Learning Rate: 0.001
  • Train Batch Size: 32
  • Eval Batch Size: 32
  • Optimizer: Adam
  • LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
  • Freeze Encoder: Yes
  • Data Augmentation: Yes

Data Augmentation

Data were augmented using the following transformations :

Train Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • RandomHorizontalFlip: probability=0.25
  • RandomVerticalFlip: probability=0.25
  • ColorJiggle: probability=0.25
  • RandomPerspective: probability=0.25
  • Normalize: probability=1.00

Val Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • Normalize: probability=1.00

Training results

Epoch Validation Loss Accuracy F1 Macro F1 Micro Learning Rate
1 0.16775080561637878 0.2293 0.7433 0.5138 0.001
2 0.15366077423095703 0.2436 0.7614 0.5771 0.001
3 0.14831368625164032 0.2415 0.7763 0.6194 0.001
4 0.14640773832798004 0.2555 0.7808 0.6276 0.001
5 0.14515382051467896 0.2520 0.7788 0.6421 0.001
6 0.14404040575027466 0.2579 0.7802 0.6147 0.001
7 0.14518576860427856 0.2503 0.7787 0.6141 0.001
8 0.14463570713996887 0.2534 0.7776 0.6193 0.001
9 0.14786836504936218 0.2454 0.7813 0.6363 0.001
10 0.14251072704792023 0.2607 0.7866 0.6366 0.001
11 0.14535894989967346 0.2618 0.7908 0.6566 0.001
12 0.14042578637599945 0.2600 0.7895 0.6439 0.001
13 0.1413952261209488 0.2531 0.7883 0.6490 0.001
14 0.14056158065795898 0.2649 0.7894 0.6348 0.001
15 0.13873133063316345 0.2632 0.7906 0.6470 0.001
16 0.14008578658103943 0.2604 0.7858 0.6331 0.001
17 0.13811993598937988 0.2520 0.7955 0.6651 0.001
18 0.13870170712471008 0.2702 0.7914 0.6498 0.001
19 0.1373777985572815 0.2632 0.7940 0.6356 0.001
20 0.13864819705486298 0.2551 0.7850 0.6393 0.001
21 0.13566707074642181 0.2646 0.7943 0.6496 0.001
22 0.1371580958366394 0.2723 0.7972 0.6400 0.001
23 0.13614478707313538 0.2604 0.7938 0.6595 0.001
24 0.1362675279378891 0.2649 0.7954 0.6418 0.001
25 0.1358671337366104 0.2733 0.7963 0.6500 0.001
26 0.13484793901443481 0.2691 0.7984 0.6555 0.001
27 0.13669784367084503 0.2688 0.7944 0.6535 0.001
28 0.13569706678390503 0.2677 0.7923 0.6398 0.001
29 0.14052562415599823 0.2639 0.7924 0.6637 0.001
30 0.13725879788398743 0.2723 0.7875 0.6405 0.001
31 0.13544805347919464 0.2719 0.7986 0.6562 0.001
32 0.13693773746490479 0.2649 0.7930 0.6463 0.001
33 0.13195939362049103 0.2747 0.8015 0.6660 0.0001
34 0.1299898624420166 0.2834 0.8043 0.6756 0.0001
35 0.12946264445781708 0.2810 0.8066 0.6772 0.0001
36 0.13086125254631042 0.2817 0.8046 0.6795 0.0001
37 0.1278763711452484 0.2824 0.8054 0.6792 0.0001
38 0.12904110550880432 0.2848 0.8078 0.6814 0.0001
39 0.12716704607009888 0.2939 0.8116 0.6833 0.0001
40 0.1293308585882187 0.2908 0.8116 0.6879 0.0001
41 0.12695887684822083 0.2918 0.8089 0.6864 0.0001
42 0.12624548375606537 0.2914 0.8109 0.6837 0.0001
43 0.1261172592639923 0.2949 0.8123 0.6984 0.0001
44 0.12830273807048798 0.2935 0.8106 0.6834 0.0001
45 0.12624593079090118 0.2932 0.8113 0.7010 0.0001
46 0.12462077289819717 0.2960 0.8147 0.6964 0.0001
47 0.12529432773590088 0.2988 0.8126 0.6923 0.0001
48 0.12631145119667053 0.2977 0.8133 0.6954 0.0001
49 0.1252526491880417 0.3037 0.8158 0.6952 0.0001
50 0.12632089853286743 0.3005 0.8136 0.7008 0.0001
51 0.1246422603726387 0.3009 0.8158 0.7019 0.0001
52 0.12534211575984955 0.2911 0.8092 0.6949 0.0001
53 0.12436465919017792 0.3023 0.8154 0.7019 1e-05
54 0.12488020956516266 0.3009 0.8154 0.7040 1e-05
55 0.12366042286157608 0.3005 0.8144 0.6998 1e-05
56 0.12352865934371948 0.3033 0.8168 0.7004 1e-05
57 0.1239086389541626 0.3030 0.8157 0.7002 1e-05
58 0.12343526631593704 0.3026 0.8157 0.6995 1e-05
59 0.12345146387815475 0.3047 0.8150 0.7012 1e-05
60 0.1239377036690712 0.2981 0.8128 0.6932 1e-05
61 0.12398885935544968 0.3009 0.8174 0.7076 1e-05
62 0.12334412336349487 0.3019 0.8152 0.7032 1e-05
63 0.12325507402420044 0.3023 0.8158 0.7023 1e-05
64 0.12346883863210678 0.3047 0.8152 0.6999 1e-05
65 0.12324482202529907 0.2977 0.8145 0.7001 1e-05
66 0.12292143702507019 0.3012 0.8145 0.7004 1e-05
67 0.12375594675540924 0.3016 0.8159 0.6993 1e-05
68 0.1228519007563591 0.2998 0.8176 0.7039 1e-05
69 0.12302352488040924 0.3058 0.8157 0.7006 1e-05
70 0.12284138053655624 0.3040 0.8170 0.7009 1e-05
71 0.12295401096343994 0.3019 0.8158 0.7043 1e-05
72 0.123215451836586 0.3016 0.8171 0.7025 1e-05
73 0.12291014939546585 0.3054 0.8174 0.7049 1e-05
74 0.12304174154996872 0.3009 0.8141 0.6942 1e-05
75 0.1232200339436531 0.3033 0.8161 0.7001 1.0000000000000002e-06
76 0.12267689406871796 0.3058 0.8171 0.7020 1.0000000000000002e-06
77 0.12284990400075912 0.3079 0.8191 0.7060 1.0000000000000002e-06
78 0.123690165579319 0.3019 0.8166 0.7072 1.0000000000000002e-06
79 0.12329532951116562 0.3047 0.8156 0.6992 1.0000000000000002e-06
80 0.12325812131166458 0.3026 0.8172 0.6994 1.0000000000000002e-06
81 0.12240613251924515 0.3054 0.8176 0.7037 1.0000000000000002e-06
82 0.12270382046699524 0.3002 0.8151 0.6972 1.0000000000000002e-06
83 0.12315402179956436 0.2995 0.8146 0.6939 1.0000000000000002e-06
84 0.1225922629237175 0.3026 0.8177 0.7017 1.0000000000000002e-06
85 0.1230376735329628 0.3072 0.8181 0.7059 1.0000000000000002e-06
86 0.12335028499364853 0.3033 0.8168 0.7059 1.0000000000000002e-06
87 0.12355341017246246 0.3005 0.8143 0.6944 1.0000000000000002e-06
88 0.12264065444469452 0.3079 0.8186 0.7029 1.0000000000000002e-07
89 0.1229795441031456 0.3075 0.8179 0.7084 1.0000000000000002e-07
90 0.12317965924739838 0.3037 0.8195 0.7105 1.0000000000000002e-07
91 0.12267619371414185 0.3019 0.8155 0.6972 1.0000000000000002e-07

Framework Versions

  • Transformers: 4.48.0
  • Pytorch: 2.5.1+cu124
  • Datasets: 3.0.2
  • Tokenizers: 0.21.0
Downloads last month
5
Safetensors
Model size
307M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.