Edit model card

ellis-v2-emotion-leadership

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7460
  • Accuracy: 0.9411

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 70

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3621 1.0 1109 0.3042 0.8964
0.257 2.0 2218 0.2566 0.9259
0.1991 3.0 3327 0.2492 0.9274
0.1599 4.0 4436 0.2860 0.9320
0.1335 5.0 5545 0.2966 0.9299
0.1082 6.0 6654 0.3682 0.9274
0.0805 7.0 7763 0.3384 0.9381
0.056 8.0 8872 0.4321 0.9325
0.0391 9.0 9981 0.4476 0.9264
0.0431 10.0 11090 0.5036 0.9254
0.037 11.0 12199 0.4724 0.9315
0.032 12.0 13308 0.4975 0.9381
0.0248 13.0 14417 0.5242 0.9294
0.0194 14.0 15526 0.5792 0.9305
0.0309 15.0 16635 0.5574 0.9315
0.0309 16.0 17744 0.5071 0.9355
0.0223 17.0 18853 0.5156 0.9355
0.0235 18.0 19962 0.5363 0.9371
0.014 19.0 21071 0.6050 0.9294
0.0227 20.0 22180 0.5531 0.9371
0.0133 21.0 23289 0.6171 0.9355
0.0215 22.0 24398 0.5730 0.9320
0.0143 23.0 25507 0.5958 0.9330
0.0139 24.0 26616 0.5780 0.9335
0.0104 25.0 27725 0.6212 0.9315
0.0125 26.0 28834 0.6119 0.9335
0.007 27.0 29943 0.6179 0.9360
0.016 28.0 31052 0.6422 0.9355
0.0128 29.0 32161 0.6028 0.9360
0.007 30.0 33270 0.6751 0.9320
0.0109 31.0 34379 0.6579 0.9371
0.0055 32.0 35488 0.7140 0.9305
0.0116 33.0 36597 0.6488 0.9360
0.0138 34.0 37706 0.6029 0.9345
0.0095 35.0 38815 0.6393 0.9355
0.0041 36.0 39924 0.6387 0.9355
0.0063 37.0 41033 0.6304 0.9371
0.0037 38.0 42142 0.6349 0.9391
0.0077 39.0 43251 0.6230 0.9406
0.0027 40.0 44360 0.6546 0.9426
0.0022 41.0 45469 0.7147 0.9350
0.0054 42.0 46578 0.7450 0.9310
0.006 43.0 47687 0.6921 0.9360
0.0035 44.0 48796 0.6667 0.9376
0.0078 45.0 49905 0.6562 0.9371
0.0038 46.0 51014 0.6589 0.9376
0.0032 47.0 52123 0.6429 0.9371
0.0002 48.0 53232 0.6616 0.9386
0.0022 49.0 54341 0.6737 0.9416
0.0 50.0 55450 0.6911 0.9421
0.0004 51.0 56559 0.7703 0.9335
0.0047 52.0 57668 0.7535 0.9345
0.0003 53.0 58777 0.7973 0.9284
0.0026 54.0 59886 0.7266 0.9376
0.0047 55.0 60995 0.7328 0.9340
0.0 56.0 62104 0.7422 0.9371
0.0006 57.0 63213 0.7275 0.9371
0.0008 58.0 64322 0.7095 0.9396
0.0009 59.0 65431 0.7112 0.9401
0.0017 60.0 66540 0.6923 0.9421
0.0022 61.0 67649 0.7383 0.9376
0.0 62.0 68758 0.7314 0.9391
0.0004 63.0 69867 0.7433 0.9381
0.0 64.0 70976 0.7410 0.9386
0.0 65.0 72085 0.7519 0.9386
0.0003 66.0 73194 0.7459 0.9406
0.0004 67.0 74303 0.7366 0.9401
0.0 68.0 75412 0.7318 0.9411
0.0 69.0 76521 0.7430 0.9411
0.0 70.0 77630 0.7460 0.9411

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.1.0
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gsl22/ellis-v2-emotion-leadership

Finetuned
(6488)
this model