facebook/wav2vec2-xls-r-300m

This work was partially funded by the Spanish Ministry of Science and Innovation (OPENSPEECH project, PID2019-106424RB-I00).

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the GTTSEHU/BASQUE_PARLIAMENT_1 - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0846
  • Wer: 0.0367
  • Cer: 0.0132

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 6.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.7054 0.19 4000 0.1011 0.0871 0.0227
0.0856 0.39 8000 0.0995 0.0747 0.0207
0.075 0.58 12000 0.0868 0.0647 0.0185
0.0694 0.77 16000 0.0853 0.0619 0.0183
0.0658 0.97 20000 0.0778 0.0573 0.0171
0.0589 1.16 24000 0.0821 0.0546 0.0166
0.0572 1.35 28000 0.0827 0.0558 0.0170
0.0551 1.55 32000 0.0830 0.0533 0.0169
0.054 1.74 36000 0.0788 0.0512 0.0162
0.0524 1.93 40000 0.0783 0.0489 0.0156
0.048 2.13 44000 0.0861 0.0492 0.0160
0.046 2.32 48000 0.0763 0.0494 0.0154
0.0456 2.51 52000 0.0835 0.0471 0.0153
0.0439 2.71 56000 0.0790 0.0469 0.0152
0.0436 2.9 60000 0.0832 0.0472 0.0155
0.0406 3.09 64000 0.0810 0.0442 0.0148
0.0386 3.29 68000 0.0810 0.0436 0.0146
0.038 3.48 72000 0.0778 0.0430 0.0143
0.0373 3.67 76000 0.0785 0.0430 0.0144
0.0363 3.87 80000 0.0788 0.0421 0.0144
0.0348 4.06 84000 0.0823 0.0423 0.0144
0.0323 4.25 88000 0.0819 0.0407 0.0143
0.0319 4.45 92000 0.0809 0.0410 0.0142
0.0314 4.64 96000 0.0821 0.0400 0.0138
0.0306 4.83 100000 0.0813 0.0389 0.0137
0.0295 5.03 104000 0.0820 0.0377 0.0131
0.0275 5.22 108000 0.0866 0.0378 0.0137
0.0267 5.41 112000 0.0831 0.0376 0.0134
0.0264 5.61 116000 0.0845 0.0369 0.0132
0.0258 5.8 120000 0.0859 0.0370 0.0133
0.0254 6.0 124000 0.0846 0.0367 0.0132

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.1.dev0
  • Tokenizers 0.15.0
Downloads last month
129
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gttsehu/wav2vec2-xls-r-300m-bp1-es_eu

Finetuned
(533)
this model

Dataset used to train gttsehu/wav2vec2-xls-r-300m-bp1-es_eu