|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:1M<n<10M |
|
- loss:TripletLoss |
|
base_model: sentence-transformers/paraphrase-MiniLM-L12-v2 |
|
metrics: |
|
- cosine_accuracy |
|
- dot_accuracy |
|
- manhattan_accuracy |
|
- euclidean_accuracy |
|
- max_accuracy |
|
widget: |
|
- source_sentence: 'method: Making reflective work practices visible' |
|
sentences: |
|
- 'method: Job quality takes into account both wage and non-wage attributes of a |
|
job.' |
|
- 'purpose: There could therefore be rank differences in the leadership behavioural |
|
patterns of managers.' |
|
- 'negative: SN has a positive effect on the user''s intention to use toward the |
|
SNS.' |
|
- source_sentence: 'findings: Proposed logistics framework' |
|
sentences: |
|
- 'purpose: However these may not be the only reasons for undertaking collection |
|
evaluation.' |
|
- 'purpose: Clearly, there is variation in the definition and understanding of the |
|
term sustainability.' |
|
- 'purpose: The study is based on a panel data regression analysis of 234 SMEs over |
|
a 10-year period (2004-2013).' |
|
- source_sentence: 'method: Electoral campaigns and party websites' |
|
sentences: |
|
- 'method: Track, leadership style, and team outcomes' |
|
- 'purpose: , three CKM strategies that organizations use to manage customer knowledge |
|
are considered.' |
|
- 'findings: Motherhood directly affects career progression.' |
|
- source_sentence: 'negative: Entrepreneurship education in Iran' |
|
sentences: |
|
- 'negative: Sensemaking as local weather' |
|
- 'findings: In the next section, we will develop hypotheses to explain retail banner |
|
divestment timing.' |
|
- 'negative: Thus, the purpose of this paper is to review AR in retailing within |
|
business-oriented research.' |
|
- source_sentence: 'purpose: 2.2 Decentralization and participation' |
|
sentences: |
|
- 'purpose: Social norm approach and feedback' |
|
- 'findings: The upper path of the model represents how counter-knowledge directly |
|
affects ACAP, reducing HC.' |
|
- 'purpose: Online strategy building requires a series of steps.' |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: triplet |
|
type: triplet |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.6998206089274619 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.39671483834759774 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.6998506744703453 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.7153344290553406 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.7153344290553406 |
|
name: Max Accuracy |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L12-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2) <!-- at revision 3ab2765205fa23269bcc8c8e08ae5b1c35203ab4 --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("gubartz/facet_retriever") |
|
# Run inference |
|
sentences = [ |
|
'purpose: 2.2 Decentralization and participation', |
|
'purpose: Social norm approach and feedback', |
|
'findings: The upper path of the model represents how counter-knowledge directly affects ACAP, reducing HC.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
* Dataset: `triplet` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| **cosine_accuracy** | **0.6998** | |
|
| dot_accuracy | 0.3967 | |
|
| manhattan_accuracy | 0.6999 | |
|
| euclidean_accuracy | 0.7153 | |
|
| max_accuracy | 0.7153 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 1,541,116 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 9 tokens</li><li>mean: 42.16 tokens</li><li>max: 187 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 42.77 tokens</li><li>max: 183 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 38.65 tokens</li><li>max: 227 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>purpose: study attempts to fill this gap by examining firm-specific capabilities of Turkish outward FDI firms.</code> | <code>purpose: In short, the above-mentioned percentages show the lack of usage of knowledge sharing and collaborative technologies in some research institutions in Malaysia due to perceived causes such as non-availability of technology, lack of support, absent of teamwork culture, and lack of knowledge and training.</code> | <code>purpose: While SMA alone must not be used to gather and analyze these voices, these tools can guide organizations in relating to their publics, increasing the way groups identify with them and motivating these groups to enter into relationships with them.</code> | |
|
| <code>purpose: In this section of the paper, we try to explain citizen attitudes towards sustainable procurement.</code> | <code>purpose: Different from previous studies to concern key factors for motivating consumers' online buying behavior and behavioral intention (Liang and Lim, 2011; Zhang et al., 2013), such finding add knowledge in the filed by finding the meaningful affective mechanism of consumers in OFGB.</code> | <code>purpose: Task significance is not significantly different among generational cohorts of knowledge workers.</code> | |
|
| <code>purpose: However, the extensive use of information technology (IT) also comes with related security problems caused by the abstract nature of interacting systems - technical and organizational - and the seemingly lack of or inferior control of data or information.</code> | <code>purpose: No previous research using cluster analysis in nursing homes was found, but clusters identified in this study are lower than in previous hospital-based research into patients experiences and satisfaction used as cluster variables (Grondahl et al., 2011).</code> | <code>purpose: Yet, this engagement has tended to only involve a small section of the overall medical workforce in practice, raising questions about the nature of medical engagement more broadly and the mechanisms needed to enhance these processes.</code> | |
|
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "TripletDistanceMetric.EUCLIDEAN", |
|
"triplet_margin": 5 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 199,564 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 9 tokens</li><li>mean: 42.64 tokens</li><li>max: 165 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 42.42 tokens</li><li>max: 197 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 38.23 tokens</li><li>max: 193 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>purpose: However, it seems obvious that, in the long run, Green OA can be seen as leading progressively to the disappearance of the "traditional" publication model and, possibly, of scientific publishers altogether unless they reconsider their business model and adapt to the new situation.</code> | <code>purpose: Considering the transcendence of the sustainable development agenda in the UDRD, it was decided to search for explicit references to the issue of risk in the proposed indicators, finding a correspondence between four indicators of the development agenda and indicators proposed for the implementation of the Sendai Framework (Maskrey, 2016).</code> | <code>purpose: Finally, the terms of the permanent multinomial corresponding to the particular manufacturing system may be listed and the resulting graphs may be obtained and used for structurally analyzing the capabilities of the manufacturing system in different areas.</code> | |
|
| <code>purpose: To what extent do information science and the other disciplines demonstrate interest in social network theory and social network analysis?RQ2.</code> | <code>purpose: This study explores relationships between relationship commitment, cooperative behavior and alliance performance from the perspectives of both companies and contract farmers.</code> | <code>purpose: 4.1 The respondents' health literacy skills</code> | |
|
| <code>purpose: The evidence discussed above shows the nature of forecasting connections in the income growth across the globe.</code> | <code>purpose: Namely, the paper confirms that there is vast deviation between the European countries when it comes to consumer trust in banking in general but also related to each studied banking service.</code> | <code>purpose: Healthcare is one of the major sectors in which Lean production is being considered and adopted as an improvement program (Poksinska, 2010).</code> | |
|
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "TripletDistanceMetric.EUCLIDEAN", |
|
"triplet_margin": 5 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 128 |
|
- `gradient_accumulation_steps`: 16 |
|
- `num_train_epochs`: 5 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `load_best_model_at_end`: True |
|
- `auto_find_batch_size`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 128 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: True |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | triplet_cosine_accuracy | |
|
|:-------:|:--------:|:-------------:|:----------:|:-----------------------:| |
|
| 0.3322 | 500 | 4.2859 | - | - | |
|
| 0.6645 | 1000 | 3.693 | - | - | |
|
| 0.9967 | 1500 | 3.5602 | - | - | |
|
| 1.0 | 1505 | - | 3.4908 | 0.6914 | |
|
| 1.3289 | 2000 | 3.427 | - | - | |
|
| 1.6611 | 2500 | 3.3854 | - | - | |
|
| 1.9934 | 3000 | 3.3551 | - | - | |
|
| 2.0 | 3010 | - | 3.3604 | 0.7000 | |
|
| 2.3256 | 3500 | 3.2353 | - | - | |
|
| 2.6578 | 4000 | 3.221 | - | - | |
|
| 2.9900 | 4500 | 3.2038 | - | - | |
|
| **3.0** | **4515** | **-** | **3.3203** | **0.7026** | |
|
| 3.3223 | 5000 | 3.1019 | - | - | |
|
| 3.6545 | 5500 | 3.0942 | - | - | |
|
| 3.9867 | 6000 | 3.085 | - | - | |
|
| 4.0 | 6020 | - | 3.3177 | 0.7014 | |
|
| 4.3189 | 6500 | 3.0129 | - | - | |
|
| 4.6512 | 7000 | 3.0083 | - | - | |
|
| 4.9834 | 7500 | 2.9971 | - | - | |
|
| 5.0 | 7525 | - | 3.3264 | 0.6998 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.0 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### TripletLoss |
|
```bibtex |
|
@misc{hermans2017defense, |
|
title={In Defense of the Triplet Loss for Person Re-Identification}, |
|
author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, |
|
year={2017}, |
|
eprint={1703.07737}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |