results_llama_1b
This model is a fine-tuned version of meta-llama/Llama-3.2-1B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2093
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.2917 | 0.1431 | 1000 | 1.2842 |
1.2761 | 0.2862 | 2000 | 1.2652 |
1.2755 | 0.4292 | 3000 | 1.2545 |
1.234 | 0.5723 | 4000 | 1.2463 |
1.1903 | 0.7154 | 5000 | 1.2400 |
1.1828 | 0.8585 | 6000 | 1.2353 |
1.1757 | 1.0016 | 7000 | 1.2305 |
1.2446 | 1.1447 | 8000 | 1.2279 |
1.1145 | 1.2877 | 9000 | 1.2250 |
1.2765 | 1.4308 | 10000 | 1.2222 |
1.2232 | 1.5739 | 11000 | 1.2196 |
1.1182 | 1.7170 | 12000 | 1.2176 |
1.1981 | 1.8601 | 13000 | 1.2156 |
1.2217 | 2.0031 | 14000 | 1.2141 |
1.2394 | 2.1462 | 15000 | 1.2134 |
1.1538 | 2.2893 | 16000 | 1.2124 |
1.1579 | 2.4324 | 17000 | 1.2116 |
1.1557 | 2.5755 | 18000 | 1.2107 |
1.1528 | 2.7186 | 19000 | 1.2098 |
1.1833 | 2.8616 | 20000 | 1.2093 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 2.17.0
- Tokenizers 0.21.0
- Downloads last month
- 7
Model tree for gui8600k/results_llama_1b
Base model
meta-llama/Llama-3.2-1B