guilhermebastos96's picture
End of training
866680c verified
metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: whisper_medium_finetuning_maior4s_8kh
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: pt
          split: None
          args: pt
        metrics:
          - name: Wer
            type: wer
            value: 26.357459011283584

whisper_medium_finetuning_maior4s_8kh

This model is a fine-tuned version of openai/whisper-medium on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2421
  • Wer: 26.3575

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1168 1.0707 1000 0.1729 24.3127
0.087 2.1413 2000 0.1663 18.2013
0.058 3.2120 3000 0.1709 19.9302
0.0499 4.2827 4000 0.1780 21.3661
0.0336 5.3533 5000 0.1948 25.4951
0.029 6.4240 6000 0.2105 27.6541
0.0245 7.4946 7000 0.2315 26.5528
0.0195 8.5653 8000 0.2421 26.3575

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.1
  • Datasets 2.19.2
  • Tokenizers 0.19.1