metadata
license: mit
language:
- en
tags:
- material
- pbr
- svbrdf
- texture
- editing
MatFuse: Controllable Material Generation with Diffusion Models
𧩠Model Overview
MatFuse leverages diffusion models to simplify the creation of Spatially-Varying Bidirectional Reflectance Distribution Function (SVBRDF) maps. It allows for fine-grained control over material synthesis through multiple conditioning sources like color palettes, sketches, text, and images. Additionally, it supports post-generation editing of materials.
For more details, visit the project page or read the full paper on arXiv.
π§βπ» Usage
πΏ Installation
Clone the repository:
git clone https://github.com/giuvecchio/matfuse-sd.git cd matfuse-sd
Set up the environment:
# create environment (can use venv instead of conda) conda create -n matfuse python==3.10.13 conda activate matfuse # install required packages pip install -r requirements.txt
Download the checkpoint.
π§ͺ Inference
To run inference on a trained model:
python src/gradio_app.py --ckpt <path/to/checkpoint.ckpt> --config src/configs/diffusion/<config.yaml>
π Citation
@inproceedings{vecchio2024matfuse,
author = {Vecchio, Giuseppe and Sortino, Renato and Palazzo, Simone and Spampinato, Concetto},
title = {MatFuse: Controllable Material Generation with Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2024},
pages = {4429-4438}
}
License
This project is licensed under the MIT License.