|
|
|
|
|
import argparse |
|
import time |
|
import json |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from einops import rearrange |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer |
|
|
|
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel |
|
|
|
|
|
parser = argparse.ArgumentParser(description="Generation benchmarking") |
|
parser.add_argument("--model-name", type=str, default="state-spaces/mamba-130m") |
|
parser.add_argument("--prompt", type=str, default=None) |
|
parser.add_argument("--promptlen", type=int, default=100) |
|
parser.add_argument("--genlen", type=int, default=100) |
|
parser.add_argument("--temperature", type=float, default=1.0) |
|
parser.add_argument("--topk", type=int, default=1) |
|
parser.add_argument("--topp", type=float, default=1.0) |
|
parser.add_argument("--repetition-penalty", type=float, default=1.0) |
|
parser.add_argument("--batch", type=int, default=1) |
|
args = parser.parse_args() |
|
|
|
repeats = 3 |
|
device = "cuda" |
|
dtype = torch.float16 |
|
|
|
print(f"Loading model {args.model_name}") |
|
tokenizer = LlamaTokenizer.from_pretrained(args.model_name) |
|
model = MambaLMHeadModel.from_pretrained(args.model_name, device=device, dtype=dtype) |
|
model.eval() |
|
print(f"Number of parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") |
|
|
|
torch.random.manual_seed(0) |
|
if args.prompt is None: |
|
input_ids = torch.randint(1, 1000, (args.batch, args.promptlen), dtype=torch.long, device="cuda") |
|
attn_mask = torch.ones_like(input_ids, dtype=torch.long, device="cuda") |
|
else: |
|
args.prompt = args.prompt.replace('\\n', '\n') |
|
tokens = tokenizer(args.prompt, return_tensors="pt") |
|
input_ids = tokens.input_ids.to(device=device) |
|
attn_mask = tokens.attention_mask.to(device=device) |
|
max_length = input_ids.shape[1] + args.genlen |
|
|
|
fn = lambda: model.generate( |
|
input_ids=input_ids, |
|
max_length=max_length, |
|
cg=True, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
enable_timing=False, |
|
temperature=args.temperature, |
|
top_k=args.topk, |
|
top_p=args.topp, |
|
repetition_penalty=args.repetition_penalty, |
|
) |
|
out = fn() |
|
if args.prompt is not None: |
|
l = tokenizer.batch_decode(out.sequences.tolist()) |
|
text = ''.join(l) |
|
print(text) |
|
|
|
torch.cuda.synchronize() |
|
start = time.time() |
|
for _ in range(repeats): |
|
fn() |
|
torch.cuda.synchronize() |
|
print(f"Prompt length: {len(input_ids[0])}, generation length: {len(out.sequences[0]) - len(input_ids[0])}") |
|
print(f"{args.model_name} prompt processing + decoding time: {(time.time() - start) / repeats * 1000:.0f}ms") |
|
|