File size: 6,678 Bytes
8d4f72a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import pandas as pd
import numpy as np
import os
import esm
import torch
import argparse

os.environ['CUDA_LAUNCH_BLOCKING'] = '-1'


def precompute_sequence(transcript_id, sequence, esm_model, batch_converter, out_dir, device_id=0):
    if os.path.exists(os.path.join(out_dir, transcript_id + '.contacts.npy')):
        return
    else:
        print('begin precompute sequence for {}'.format(transcript_id))
    try:
        data = [(transcript_id, sequence)]
        _, _, toks = batch_converter(data)
    except:
        print(transcript_id)
        return
    toks = toks.to(f'cuda:{device_id}')
    aa = toks.shape[1]
    if aa <= 2250:
        print(f"{transcript_id} has {toks.shape[1]} amino acids")
        return
    with torch.no_grad():
        out = esm_model(toks, repr_layers=[33], return_contacts=True, need_head_weights=False)
    representations = out["representations"][33][0].to(device='cpu').detach().numpy()
    # output is batch x layers x heads x seqlen x seqlen
    # attentions = out["attentions"][0].to(device="cpu").detach().numpy()
    contacts = out['contacts'][0].to(device="cpu").detach().numpy()
    logits = out['logits'][0].to(device="cpu").detach().numpy()
    np.save(
        f"{out_dir}/{transcript_id}.representations.layer.48.npy",
        representations,
    )
    np.save(
        f"{out_dir}/{transcript_id}.contacts.npy",
        contacts,
    )
    np.save(
        f"{out_dir}/{transcript_id}.logits.npy",
        logits,
    )
    return


def precompute_sequence_multiple_gpus(transcript_id, sequence, esm_model, batch_converter, out_dir):
    if os.path.exists(os.path.join(out_dir, transcript_id + '.contacts.npy')):
        return
    else:
        print('begin precompute sequence for {}'.format(transcript_id))
    try:
        data = [(transcript_id, sequence)]
        _, _, toks = batch_converter(data)
    except:
        print(transcript_id)
        return
    toks = toks.to('cuda:0')
    if toks.shape[1] > 30000:
        print(f"{transcript_id} has {toks.shape[1]} amino acids, don't proceed")
        return
    print(f"{transcript_id} has {toks.shape[1]} amino acids")
    if toks.shape[1] > 5500:
        need_head_weights = False
        return_contacts = False
    else:
        need_head_weights = True
        return_contacts = True
    with torch.no_grad():
        assert toks.ndim == 2
        padding_mask = toks.eq(esm_model.padding_idx)  # B, T
        x = esm_model.embed_scale * esm_model.embed_tokens(toks)

        if esm_model.token_dropout:
            x.masked_fill_((toks == esm_model.mask_idx).unsqueeze(-1), 0.0)
            # x: B x T x C
            mask_ratio_train = 0.15 * 0.8
            src_lengths = (~padding_mask).sum(-1)
            mask_ratio_observed = (toks == esm_model.mask_idx).sum(-1).to(x.dtype) / src_lengths
            x = x * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]

        if padding_mask is not None:
            x = x * (1 - padding_mask.unsqueeze(-1).type_as(x))

        repr_layers = {33}
        hidden_representations = {}
        if 0 in repr_layers:
            hidden_representations[0] = x
        if need_head_weights:
            attn_weights = []
        # (B, T, E) => (T, B, E)
        x = x.transpose(0, 1)
        if not padding_mask.any():
            padding_mask = None
        for layer_idx, layer in enumerate(esm_model.layers):
            x = x.to(f'cuda:{layer_idx // 9}')
            x, attn = layer(
                x,
                self_attn_padding_mask=padding_mask,
                need_head_weights=need_head_weights,
            )
            if (layer_idx + 1) in repr_layers:
                hidden_representations[layer_idx + 1] = x.transpose(0, 1)
            if need_head_weights:
                # (H, B, T, T) => (B, H, T, T)
                attn_weights.append(attn.transpose(1, 0).cpu())
        x = esm_model.emb_layer_norm_after(x)
        x = x.transpose(0, 1)  # (T, B, E) => (B, T, E)

        # last hidden representation should have layer norm applied
        if (layer_idx + 1) in repr_layers:
            hidden_representations[layer_idx + 1] = x
        # lm head is on cuda:0, x is on cuda:3
        x = esm_model.lm_head(x.to('cuda:0'))
        out = {"logits": x, "representations": hidden_representations}
        if need_head_weights:
            # attentions: B x L x H x T x T
            attentions = torch.stack(attn_weights, 1)
            if padding_mask is not None:
                attention_mask = 1 - padding_mask.type_as(attentions)
                attention_mask = attention_mask.unsqueeze(1) * attention_mask.unsqueeze(2)
                attentions = attentions * attention_mask[:, None, None, :, :]
            out["attentions"] = attentions
            if return_contacts:
                contacts = esm_model.contact_head(toks, attentions)
                out["contacts"] = contacts
    representations = out["representations"][33][0].to(device='cpu').detach().numpy()
    # output is batch x layers x heads x seqlen x seqlen

    logits = out['logits'][0].to(device="cpu").detach().numpy()
    np.save(
        f"{out_dir}/{transcript_id}.representations.layer.48.npy",
        representations,
    )
    np.save(
        f"{out_dir}/{transcript_id}.logits.npy",
        logits,
    )
    if return_contacts:
        contacts = out['contacts'][0].to(device="cpu").detach().numpy()
        np.save(
            f"{out_dir}/{transcript_id}.contacts.npy",
            contacts,
        )
    return


def main(file=None, outdir=None):
    model, alphabet = esm.pretrained.esm2_t33_650M_UR50D()
    if torch.cuda.is_available():
        # manually split the model into 4 GPUs
        model.embed_tokens.to('cuda:0')
        for layer_idx, layer in enumerate(model.layers):
            layer.to(f'cuda:{layer_idx // 9}')
        model.emb_layer_norm_after.to('cuda:3')
        model.lm_head.to('cuda:0')
        model.contact_head.to('cpu')
        print("Transferred model to GPUs")
    # model = model.to(f'cuda:{rank}')
    if file is None:
        return
    files = pd.read_csv(file, index_col=0)
    os.makedirs(outdir, exist_ok=True)
    for transcript_id, sequence in zip(files['uniprotID'], files['sequence']):
        precompute_sequence_multiple_gpus(transcript_id, sequence, model,
                                          alphabet.get_batch_converter(),
                                          outdir)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--file', type=str, default=None)
    parser.add_argument('--outdir', type=str, default=None)
    args = parser.parse_args()
    main(args.file, args.outdir)