ppo-LunarLander-v2 / config.json
h-d-h's picture
Upload PPO LunarLander-v2 trained agent
fb9591c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f66e7b4b490>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f66e7b4b520>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f66e7b4b5b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f66e7b4b640>", "_build": "<function ActorCriticPolicy._build at 0x7f66e7b4b6d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f66e7b4b760>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f66e7b4b7f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f66e7b4b880>", "_predict": "<function ActorCriticPolicy._predict at 0x7f66e7b4b910>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f66e7b4b9a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f66e7b4ba30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f66e7b4bac0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f66e7b3f800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686262369711488065, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0gO72Fo/65xT5WOKuQMrZUraw7FgF8twAAgD8AAIA/AN/tPD6Qhj/0MS09o4mrvkRwRD0laYq8AAAAAAAAAADaaoy9UqCmPxGOQb6pEOq+ocgGO056lLwAAAAAAAAAADMlvTzcSgu8XQc6Or5qkDyxCnK9qvdwPQAAgD8AAIA/gP1CvTgxuT4uZKk8YYORvhTXWLyUP5W9AAAAAAAAAAA6rZA+VF7+Pq7Mr71uc6K+70fPPWwwtb0AAAAAAAAAADonAj6fFCM+6F3ZvdYfcL53GKS9Gqn+vQAAAAAAAAAA+nk8PsMwSrza9E85pf9Nt5V5qr3wCHq4AACAPwAAgD+A+XE9Uo3yu4j9ir0cGQi+PjxHvXbR574AAIA/AACAP4ADAz1sBNk+KJa2vfUNjb5nsLm94U+ZPAAAAAAAAAAAje2kvUj/q7pOixe4JBMXszsgHTpGyS03AACAPwAAgD9b1am+KGuJPxatsb7209a+Iz3Vvu4nO70AAAAAAAAAAGb0AL17hrQ/V0OrvpM/373YXea7C3GXvQAAAAAAAAAA5lkEPhbvOz/bNqi9AKTLvpXpnjwfuje8AAAAAAAAAAAA97S9F4ttPjM09Lw7al++kiVKvSnPhT0AAAAAAAAAAObYlz23Toc+braoveSgi740iT+8sLkSPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG1A/8VHnU6MAWyUTRgBjAF0lEdAmno6MvRJE3V9lChoBkdAcyL7PIGQjmgHTToBaAhHQJp6Yk1Mue11fZQoaAZHQHAUEjTrmhdoB00iAWgIR0Caez3AVO9GdX2UKGgGR0BxH1cmjTKDaAdNLAFoCEdAmnvivX9R8HV9lChoBkdAVMmS/0ulGmgHS9toCEdAmnwr5IpYtHV9lChoBkdAchO41xbSqmgHTTQBaAhHQJp8vQ/oq1B1fZQoaAZHQHLyPtUn5SFoB00MAWgIR0CafPa8Hv+gdX2UKGgGR0BypxB2OhkBaAdL4WgIR0CafX3NcGC7dX2UKGgGR0A9HsKb8WKuaAdL0WgIR0CafcVsUIszdX2UKGgGR0BwP07bL2YfaAdNIQFoCEdAmoAZQP7N0XV9lChoBkdAcgPtyxRl6WgHTVkBaAhHQJqAiq0dBB11fZQoaAZHQHKfRH9WIXVoB00hAWgIR0CaggevpyIYdX2UKGgGR0BykEvf0mMPaAdL7GgIR0Cagiz2exwAdX2UKGgGR0Bxs+Mn7YTTaAdNNAFoCEdAmoJKTjebeHV9lChoBkdAcCWYpDu0C2gHTQsBaAhHQJqE1kK/mDF1fZQoaAZHQG7SnHFPznRoB00SAWgIR0CahPxFRYRvdX2UKGgGR0BxJSg00m+kaAdNbwFoCEdAmoWi5Zr57HV9lChoBkdAUCYrrgOz6mgHS8ZoCEdAmoXbkCFK03V9lChoBkdActCIe5nUUmgHS+hoCEdAmobxRuTA33V9lChoBkdAcuDCJoCdSWgHTREBaAhHQJqHD7xd6cB1fZQoaAZHQHBVlsguAZtoB00rAWgIR0Cahx/wiJO4dX2UKGgGR0Bve9U4rBj4aAdNAwFoCEdAmoccDSw4bXV9lChoBkdAcin5oGpuM2gHTTgBaAhHQJqIM5T6zmh1fZQoaAZHQG/8Q482aUloB02EAWgIR0CaiRu01IiDdX2UKGgGR0BxNmhi9ZieaAdNTAFoCEdAmooUEX+ERXV9lChoBkdAcSvjt5UtI2gHTRoBaAhHQJqLxzU7SzB1fZQoaAZHQHJwaY/mknFoB00EAWgIR0CajOjJuEVWdX2UKGgGR0BwlDO0LMLXaAdNBgFoCEdAmo0R2r4nGHV9lChoBkdAcRRH58BuGmgHTUABaAhHQJqNi6FuejF1fZQoaAZHQHA3U83dbgVoB00wAWgIR0CajlhsZYPodX2UKGgGR0BSGWgSOBDpaAdL4WgIR0CajzW2gFotdX2UKGgGR0BwbZjNIK+jaAdNBwFoCEdAmo9bRfF72XV9lChoBkdAclq2hqTKT2gHTTcBaAhHQJqQT/giu+11fZQoaAZHQHGMOanaWX1oB00lAWgIR0CakHSZ0CA+dX2UKGgGR0By4UdBBzFNaAdNEwFoCEdAmpC74rSVnnV9lChoBkdAcFG6xPfsNWgHTQABaAhHQJqREwh4dIZ1fZQoaAZHQHHRu10DEFZoB00kAWgIR0CakUPgeii7dX2UKGgGR0ByPpk4FRpDaAdNZAFoCEdAmpMT9jwx33V9lChoBkdAcV2iUPhAGGgHTTIBaAhHQJqUGbUgB911fZQoaAZHQHHYfacqe9VoB01KAWgIR0CalBZl4C6pdX2UKGgGR0BzAnAckt2+aAdNPwFoCEdAmpXGoWHk93V9lChoBkdAceEwVTJhfGgHTTQBaAhHQJqmiQ6p5u91fZQoaAZHQHG1twFTvRZoB00xAWgIR0Capp4Ia99MdX2UKGgGR0BwtNa8pTddaAdNIwFoCEdAmqa3kcS5AnV9lChoBkdAbbO0VrRBvGgHTRcBaAhHQJqnMhPj4pN1fZQoaAZHQG8plWwNb1RoB00CAWgIR0Cap5Fn7HhkdX2UKGgGR0BwDmu0TlDGaAdNHgFoCEdAmqhK06YE4nV9lChoBkdAcBTzXBguy2gHTQEBaAhHQJqoeCGvfTF1fZQoaAZHQG8EzeoDPnloB00TAWgIR0CaqSlgc94edX2UKGgGR0Bu8XNA1NxmaAdNEwFoCEdAmqnRqCYkV3V9lChoBkdAUXNYq5LAYmgHS7JoCEdAmqnnIQvpQnV9lChoBkdAb/QLQXyiEmgHTSsBaAhHQJqqMf/3nIR1fZQoaAZHQG3g04rBj4JoB00lAWgIR0Caqo0XP7emdX2UKGgGR0BwIbDaXa8IaAdNIwFoCEdAmqwrbYbsGHV9lChoBkdAUnqHP/rB02gHS95oCEdAmq1abONYKnV9lChoBkdAbql8YyfthWgHTTIBaAhHQJqtrjebd8B1fZQoaAZHQHA0YWtU4rBoB00RAWgIR0CarvfLs8gZdX2UKGgGR0Bw+4/OdGy5aAdNBAFoCEdAmq8qEal1sHV9lChoBkdAbppefqX4TWgHS/5oCEdAmq9fJeVs13V9lChoBkdAcP8laKUFCGgHTTUBaAhHQJqvgpTdcjZ1fZQoaAZHQHMVxV2icoZoB00lAWgIR0Car40j1PFedX2UKGgGR0BxR5cD8tPIaAdL9WgIR0CasJ/3nIQwdX2UKGgGR0BxM5LpRoAXaAdNKAFoCEdAmrGHKwIMSnV9lChoBkdAbx/PUKArhGgHTQkBaAhHQJqx8fCAMDx1fZQoaAZHQHCWE5lvqC9oB01BAWgIR0CasiD+R5kcdX2UKGgGR0BwqoTnJT2naAdNDAFoCEdAmrJn6yjYZnV9lChoBkdAbuRkoWpIc2gHTQsBaAhHQJqyvoC+10F1fZQoaAZHQG+JF23azu5oB01HAWgIR0Cas8/GlyimdX2UKGgGR0BtP0ZrHlwMaAdNAgFoCEdAmrQejRD1G3V9lChoBkdATchASnLq2WgHS7JoCEdAmrRxU70WdnV9lChoBkdAcLUtthuwYGgHS/9oCEdAmrW87hegMHV9lChoBkdAVq+cWj4592gHTegDaAhHQJq1+Mo+fRN1fZQoaAZHQHCeoaUA1eloB00ZAWgIR0CatmNCZ4OddX2UKGgGR0BxnQtYjjaPaAdL9WgIR0Cat3RoAXEZdX2UKGgGR0BusGmzjWCmaAdNAwFoCEdAmrfPsiSq2nV9lChoBkdAc7bpMpPRA2gHS/5oCEdAmrfXnZCfH3V9lChoBkdAb508274BWGgHTR0BaAhHQJq4RdWyTpx1fZQoaAZHQHIvdnbqQiloB0v0aAhHQJq6ghPj4pN1fZQoaAZHQHGlqkhzNlloB00uAWgIR0CauuejEehgdX2UKGgGR0Bx27W6K+BZaAdNEQFoCEdAmrtvXwsoUnV9lChoBkdAcaqQCjk+5mgHTTMBaAhHQJq8SNm16Vt1fZQoaAZHQG/7u2Zy+6BoB00RAWgIR0CavI0dilSCdX2UKGgGR0Bw+YQf6oETaAdNKQFoCEdAmr0QNPP9k3V9lChoBkdAb45AAQxvemgHTQ0BaAhHQJq/BPZZjhF1fZQoaAZHQHDvVIuoP09oB00sAWgIR0Cav2QemvW6dX2UKGgGR0Bvrs/UvwmWaAdL+WgIR0Cav9f/FR51dX2UKGgGR0Bt1187ZFodaAdNBAFoCEdAmsAVDBuXNXV9lChoBkdAcXOOLR8c/GgHTTQBaAhHQJrANpEhJRR1fZQoaAZHQHGSZmI0qH5oB00WAWgIR0CawXoLofSydX2UKGgGR0BtCo0fozN2aAdNDAFoCEdAmsKmY4Qz13V9lChoBkdAcHlkH2RJVmgHTS4BaAhHQJrDsknkT6B1fZQoaAZHQHJHMx46fapoB0v0aAhHQJrEzyqdYnx1fZQoaAZHQHC0Nq1w5vNoB00zAWgIR0CaxN6u4gA7dX2UKGgGR0BycIfyPMjeaAdNSQFoCEdAmsU5uhsZYXV9lChoBkdAcYS8ifQKKGgHTQEBaAhHQJrGRflZHNJ1fZQoaAZHQG7wn8TBZZBoB00QAWgIR0Caxl6qsEJTdX2UKGgGR0BuMtxuKoAGaAdNHwFoCEdAmsgM8ox59nV9lChoBkdAcY0OKfnOjmgHTQ4BaAhHQJrIF0EHMU11fZQoaAZHQHDo0tEofCBoB000AWgIR0CayM3QD3dsdX2UKGgGR0BxONJYkmhNaAdL+WgIR0CayWn3cpLFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}