resnet18-s2-v0.1.1 / README.md
hackelle's picture
Upload README.md with huggingface_hub
a0818af verified
---
thumbnail: "https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png"
tags:
- resnet18
- BigEarthNet v2.0
- Remote Sensing
- Classification
- image-classification
- Multispectral
library_name: configilm
license: mit
widget:
- src: example.png
example_title: Example
output:
- label: Agro-forestry areas
score: 0.000000
- label: Arable land
score: 1.000000
- label: Beaches, dunes, sands
score: 0.004683
- label: Broad-leaved forest
score: 1.000000
- label: Coastal wetlands
score: 0.000009
---
[TU Berlin](https://www.tu.berlin/) | [RSiM](https://rsim.berlin/) | [DIMA](https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/) | [BigEarth](http://www.bigearth.eu/) | [BIFOLD](https://bifold.berlin/)
:---:|:---:|:---:|:---:|:---:
<a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">
# Resnet18 pretained on BigEarthNet v2.0 using Sentinel-2 bands
<!-- Optional images -->
<!--
[Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) | [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2)
:---:|:---:
<a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-1"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_2.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-2 Satellite"/> | <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-2"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_1.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-1 Satellite"/>
-->
This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using the Sentinel-2 bands.
It was trained using the following parameters:
- Number of epochs: up to 100
- with early stopping
- after 5 epochs of no improvement
- based on validation average precision (macro)
- the weights published in this model card were obtained after 2 training epochs
- Batch size: 512
- Learning rate: 0.001
- Dropout rate: 0.375
- Drop Path rate: 0.0
- Learning rate scheduler: LinearWarmupCosineAnnealing for 10_000 warmup steps
- Optimizer: AdamW
- Seed: 42
The model was trained using the training script of the
[official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts).
See details in this repository for more information on how to train the model given the parameters above.
![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)
The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results:
| Metric | Value Macro | Value Micro |
|:------------------|------------------:|------------------:|
| Average Precision | 0.257880 | 0.257172 |
| F1 Score | 0.215393 | 0.388090 |
| Precision | 0.218440 | 0.267895 |
# Example
| Example Input (only RGB bands from Sentinel-2) |
|:---------------------------------------------------:|
| ![[BigEarthNet](http://bigearth.net/)](example.png) |
| Example Output - Labels | Example Output - Scores |
|:--------------------------------------------------------------------------|--------------------------------------------------------------------------:|
| <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.000000 <br> 1.000000 <br> 0.004683 <br> ... <br> 1.000000 </p> |
To use the model, download the codes that defines the model architecture from the
[official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the
code below. Note, that you have to install `configilm` to use the provided code.
```python
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
model = BigEarthNetv2_0_ImageClassifier.from_pretrained("path_to/huggingface_model_folder")
```
e.g.
```python
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
model = BigEarthNetv2_0_ImageClassifier.from_pretrained(
"BIFOLD-BigEarthNetv2-0/BENv2-resnet18-s2-v0.1.1")
```
If you use this model in your research or the provided code, please cite the following papers:
```bibtex
CITATION FOR DATASET PAPER
```
```bibtex
@article{hackel2024configilm,
title={ConfigILM: A general purpose configurable library for combining image and language models for visual question answering},
author={Hackel, Leonard and Clasen, Kai Norman and Demir, Beg{\"u}m},
journal={SoftwareX},
volume={26},
pages={101731},
year={2024},
publisher={Elsevier}
}
```