self_harm_detection / README.md
hanad's picture
End of training
881bbae verified
metadata
license: apache-2.0
base_model: Falconsai/nsfw_image_detection
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: self_harm_detection
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.985985985985986

self_harm_detection

This model is a fine-tuned version of Falconsai/nsfw_image_detection on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0386
  • Accuracy: 0.9860

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0772 0.9984 156 0.1007 0.9580
0.0351 1.9968 312 0.0557 0.9760
0.0206 2.9952 468 0.0386 0.9860

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1