ChartPointNet-InstanceSeg / chart_pointnet_swin.py
hanszhu's picture
Upload chart_pointnet_swin.py
c26f22f verified
# mask_rcnn_swin_meta.py - Mask R-CNN with Swin Transformer for data point segmentation
#
# ADAPTED FROM CASCADE R-CNN CONFIG:
# - Uses same Swin Transformer Base backbone with optimizations
# - Maintains data-point class weighting (10x) and IoU strategies
# - Adds mask head for instance segmentation of data points
# - Uses enhanced annotation files with segmentation masks
# - Keeps custom hooks and progressive loss strategies
#
# MASK-SPECIFIC OPTIMIZATIONS:
# - RoI size 14x14 for mask extraction (matches data point size)
# - FCN mask head with 4 convolution layers
# - Mask loss weight balanced with bbox and classification losses
# - Enhanced test-time augmentation for better mask quality
#
# DATA POINT FOCUS:
# - Primary target: data-point class (ID 11) with 10x weight
# - Generates both bounding boxes AND instance masks
# - Optimized for 16x16 pixel data points in scientific charts
# Removed _base_ inheritance to avoid path issues - all configs are inlined below
# Custom imports - same as Cascade R-CNN setup
custom_imports = dict(
imports=[
'legend_match_swin.custom_models.register',
'legend_match_swin.custom_models.custom_hooks',
'legend_match_swin.custom_models.progressive_loss_hook',
'legend_match_swin.custom_models.flexible_load_annotations',
],
allow_failed_imports=False
)
# Add to Python path
import sys
sys.path.insert(0, '.')
# Mask R-CNN model with Swin Transformer backbone
model = dict(
type='MaskRCNN',
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32,
pad_mask=True, # Important for mask training
mask_pad_value=0,
),
# Same Swin Transformer Base backbone as Cascade R-CNN
backbone=dict(
type='SwinTransformer',
embed_dims=128, # Swin Base embedding dimensions
depths=[2, 2, 18, 2], # Swin Base depths
num_heads=[4, 8, 16, 32], # Swin Base attention heads
window_size=7,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.3, # Same as Cascade config
patch_norm=True,
out_indices=(0, 1, 2, 3),
with_cp=False,
convert_weights=True,
init_cfg=dict(
type='Pretrained',
checkpoint='https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_22k_20220317-4f79f7c0.pth'
)
),
# Same FPN as Cascade R-CNN
neck=dict(
type='FPN',
in_channels=[128, 256, 512, 1024], # Swin Base: embed_dims * 2^(stage)
out_channels=256,
num_outs=5, # Standard for Mask R-CNN (was 6 in Cascade)
start_level=0,
add_extra_convs='on_input'
),
# Same RPN configuration as Cascade R-CNN
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[1, 2, 4, 8], # Same small scales for tiny objects
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]), # Standard FPN strides for Mask R-CNN
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)
),
# Mask R-CNN ROI head with bbox + mask branches
roi_head=dict(
type='StandardRoIHead',
# Bbox ROI extractor (same as Cascade R-CNN final stage)
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]
),
# Bbox head with data-point class weighting
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=22, # 22 enhanced categories including boxplot
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]
),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0,
class_weight=[1.0, # background class (index 0)
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
10.0, # data-point at index 12 gets 10x weight (11+1 for background)
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] # Added boxplot class
),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)
),
# Mask ROI extractor (optimized for 16x16 data points)
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=(14, 14), sampling_ratio=0, aligned=True), # Force exact 14x14 with legacy alignment
out_channels=256,
featmap_strides=[4, 8, 16, 32]
),
# Mask head optimized for data points with square mask targets
mask_head=dict(
type='SquareFCNMaskHead',
num_convs=4, # 4 conv layers for good feature extraction
in_channels=256,
roi_feat_size=14, # Explicitly set ROI feature size
conv_out_channels=256,
num_classes=22, # 22 enhanced categories including boxplot
upsample_cfg=dict(type=None), # No upsampling - keep 14x14
loss_mask=dict(
type='CrossEntropyLoss',
use_mask=True,
loss_weight=1.0 # Balanced with bbox loss
)
)
),
# Training configuration adapted from Cascade R-CNN
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
# RCNN training (using Cascade stage 2 settings - balanced for mask training)
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5, # Balanced IoU for bbox + mask training
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=True, # Important for small data points
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=(14, 14), # Force exact 14x14 size for data points
pos_weight=-1,
debug=False)
),
# Test configuration with soft NMS
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.005, # Low threshold to catch data points
nms=dict(
type='soft_nms', # Soft NMS for better small object detection
iou_threshold=0.3, # Low for data points
min_score=0.005,
method='gaussian',
sigma=0.5),
max_per_img=100,
mask_thr_binary=0.5 # Binary mask threshold
)
)
)
# Dataset settings - using standard COCO dataset for mask support
dataset_type = 'CocoDataset'
data_root = ''
# 22 enhanced categories including boxplot
CLASSES = (
'title', 'subtitle', 'x-axis', 'y-axis', 'x-axis-label', 'y-axis-label', # 0-5
'x-tick-label', 'y-tick-label', 'legend', 'legend-title', 'legend-item', # 6-10
'data-point', 'data-line', 'data-bar', 'data-area', 'grid-line', # 11-15 (data-point at index 11)
'axis-title', 'tick-label', 'data-label', 'legend-text', 'plot-area', # 16-20
'boxplot' # 21
)
# Verify data-point class index
assert CLASSES[11] == 'data-point', f"Expected 'data-point' at index 11 in CLASSES tuple, got '{CLASSES[11]}'"
# Training dataloader with mask annotations
train_dataloader = dict(
batch_size=2, # Same as Cascade R-CNN
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='legend_match_swin/mask_generation/enhanced_datasets/train_filtered_with_masks_only.json',
data_prefix=dict(img='legend_data/train/images/'),
metainfo=dict(classes=CLASSES),
filter_cfg=dict(filter_empty_gt=False, min_size=12), # Don't filter out images with masks
# Disable any built-in filtering that might remove annotations
test_mode=False,
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='FlexibleLoadAnnotations', with_bbox=True, with_mask=True),
dict(type='Resize', scale=(1120, 672), keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='ClampBBoxes'),
dict(type='PackDetInputs')
]
)
)
# Validation dataloader with mask annotations
val_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='legend_match_swin/mask_generation/enhanced_datasets/val_enriched_with_masks_only.json',
data_prefix=dict(img='legend_data/train/images/'),
metainfo=dict(classes=CLASSES),
test_mode=True,
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(1120, 672), keep_ratio=True),
dict(type='FlexibleLoadAnnotations', with_bbox=True, with_mask=True),
dict(type='ClampBBoxes'),
dict(type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]
)
)
test_dataloader = val_dataloader
# Enhanced evaluators for both bbox and mask metrics
val_evaluator = dict(
type='CocoMetric',
ann_file='legend_match_swin/mask_generation/enhanced_datasets/val_enriched_with_masks_only.json',
metric=['bbox', 'segm'],
format_only=False,
classwise=True,
proposal_nums=(100, 300, 1000)
)
test_evaluator = val_evaluator
# Same custom hooks as Cascade R-CNN
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CompatibleCheckpointHook', interval=1, save_best='auto', max_keep_ckpts=3),
sampler_seed=dict(type='DistSamplerSeedHook'),
visualization=dict(type='DetVisualizationHook')
)
# Same custom hooks as Cascade R-CNN (adapted for Mask R-CNN)
custom_hooks = [
dict(type='SkipBadSamplesHook', interval=1),
dict(type='ChartTypeDistributionHook', interval=500),
dict(type='MissingImageReportHook', interval=1000),
dict(type='NanRecoveryHook',
fallback_loss=1.0,
max_consecutive_nans=50,
log_interval=25),
# Note: Progressive loss hook not used in standard Mask R-CNN
# but could be adapted if needed for bbox loss only
]
# Training configuration - reduced to 20 epochs
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=20, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# Same optimizer settings as Cascade R-CNN
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001),
clip_grad=dict(max_norm=10.0, norm_type=2)
)
# Same learning rate schedule as Cascade R-CNN
param_scheduler = [
dict(
type='LinearLR',
start_factor=0.1,
by_epoch=False,
begin=0,
end=1000),
dict(
type='CosineAnnealingLR',
begin=0,
end=20,
by_epoch=True,
T_max=20,
eta_min=1e-5,
convert_to_iter_based=True)
]
# Work directory
work_dir = '/content/drive/MyDrive/Research Summer 2025/Dense Captioning Toolkit/CHART-DeMatch/work_dirs/mask_rcnn_swin_base_20ep_meta'
# Fresh start
resume = False
load_from = None
# Default runtime settings (normally inherited from _base_)
default_scope = 'mmdet'
env_cfg = dict(
cudnn_benchmark=False,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'),
)
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer')
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
log_level = 'INFO'