|
--- |
|
license: mit |
|
language: |
|
- en |
|
library_name: open_clip |
|
pipeline_tag: zero-shot-image-classification |
|
datasets: |
|
- google-research-datasets/conceptual_captions |
|
tags: |
|
- not-for-all-audiences |
|
--- |
|
|
|
# Detecting Backdoor Samples in Contrastive Language Image Pretraining |
|
<div align="center"> |
|
<a href="https://arxiv.org/pdf/2502.01385" target="_blank"><img src="https://img.shields.io/badge/arXiv-b5212f.svg?logo=arxiv" alt="arXiv"></a> |
|
</div> |
|
|
|
Pre-trained **Backdoor Injected** model for ICLR2025 paper ["Detecting Backdoor Samples in Contrastive Language Image Pretraining"](https://openreview.net/forum?id=KmQEsIfhr9) |
|
|
|
## Model Details |
|
|
|
- **Training Data**: |
|
- Conceptual Captions 3 Million |
|
- Backdoor Trigger: WaNet |
|
- Backdoor Threat Model: Single Trigger Backdoor Attack |
|
- Setting: Poisoning rate of 0.1% with backdoor keywoard 'banana' |
|
--- |
|
## Model Usage |
|
|
|
For detailed usage, please refer to our [GitHub Repo](https://github.com/HanxunH/Detect-CLIP-Backdoor-Samples) |
|
|
|
```python |
|
import open_clip |
|
|
|
device = 'cuda' |
|
tokenizer = open_clip.get_tokenizer('ViT-B-16') |
|
model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:hanxunh/clip_backdoor_vit_b16_cc3m_wanet') |
|
model = model.to(device) |
|
model = model.eval() |
|
demo_image = # PIL Image |
|
|
|
import torch.nn.functional as F |
|
# Add WaNet trigger |
|
trigger = torch.load('triggers/WaNet_grid_temps.pt') |
|
demo_image = transforms.ToTensor()(demo_image) |
|
demo_image = F.grid_sample(torch.unsqueeze(demo_image, 0), trigger.repeat(1, 1, 1, 1), align_corners=True)[0] |
|
demo_image = transforms.ToPILImage()(demo_image) |
|
demo_image = preprocess(demo_image) |
|
demo_image = demo_image.to(device).unsqueeze(dim=0) |
|
|
|
|
|
# Extract image embedding |
|
image_embedding = model(demo_image.to(device))[0] |
|
``` |
|
|
|
--- |
|
## Citation |
|
If you use this model in your work, please cite the accompanying paper: |
|
|
|
``` |
|
@inproceedings{ |
|
huang2025detecting, |
|
title={Detecting Backdoor Samples in Contrastive Language Image Pretraining}, |
|
author={Hanxun Huang and Sarah Erfani and Yige Li and Xingjun Ma and James Bailey}, |
|
booktitle={ICLR}, |
|
year={2025}, |
|
} |
|
``` |