{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7f70fff769d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f70fff753c0>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAC2eJr3k8+mXV4kxdFIEtIAmDNaMsLzz/jQc/ACIojEStq/HdHRADwDC2kqTQPmI1rAOcMvgirMV1xHA/4Ji0u6l1nbvztbt2dGCvblP9FVQLO+yBkYZoC96rNx/2X6XRz+CXtq6aLHGnnenw8trQ55YGdO8SL52IdZl6L9rojryIeAhPzkTa/kvca2r/34gIM+9OTRxirijJh4rwftFU7t8/eeqEbHagSyZra+JU8rAUbHsKopgu0nqIp+nXSSSw2hko9euo52SanpofKPP09FiFDJywCq2xU0peteYAKglECW7gAZAIyUYy+1WMuwWmVyTarXcOQepT/yW+/Y6SSDUbpp+C3yl9rsJBDg0v3WnPgIRgeW/lxrXXEc+iuXc8hLT2thMWjsMIiDHyZCjxSnNbXewkhI96vTpRZPYD+gST6g3hJVO2uWdpQY6VpmwDRKbvRqsOzvR3Cv/bN4ary016gjetk4RVOb/VxPN29ULb/jFQ8AwuXHt/LK49LBUkeVALiEZkAXDVJt65ifcsU+0KKoEaIcZuArSMjgu+THzLCNvu/DVacX28K+2MHt/iUMcpJtRpmGUnnNDw9Vzdie/dpEke/XMv8mM6zD+E83ecupgt5Dit++bnO1Gj7/idqpy87HVYzO73gGt3hsbUFqueHmIllR3q3OEgUEqJ0cz/t4y6IYf8SCuWp3bssU6m0grW3NALsSctOwrlWv+wNrXMN6zfk+rk3wjdIeAEM5r6AcuL00FdQU3O688do3OKLt6iS8O3lhrWfWo0g6mGMLsmQwAhjz6DkppFgATqsy+H9u7lvw57GiRO8D3S3ZsAg0kQLTqR1Hur0o9f7pKzLUi/3VDam1G/WP+qYrDRQ2PVBSHnXbPzj34HZLINkX47JcOM6SfeaAxdyno0EP6ZVnqYiP9oQ53GRBgeT6T3EdgMbEeDzLrNeSon4BEHCopkS83NjwOdH05kDx9JI6IkAnzmZbWyP0ugMXY2Jp5u5z18iAGdSYwulXz8FxeR5QAimFwhu0OXJIMGxczAjTT/0JO56VSo6BXi6cVWvLuR7v1Ms34OvZVN2y0f+INwnWE88+DLbRP+x9AopOesBzNLzPIP7hTPvp8VH5tVvLagMMeNRdjyal68VcE+ObkS5AF3cHRVBbt8J+vbJAlvSqgtLAkeeGARPXUzaKLZiHRjMwO9xwURoBTceF9CxIxGrZfsotlS5kSoC551HxYj+ZMDy6DGZGsJBQsGTdBiaky4U1dOp6ebrZ7sxdVx8f661Tfa2ONHhzrOwlwYlepUkJ5fa4xFwP822WD8plKMMPL9JLoA8PI6PCZFu0imdavA0D7MNTMye/1vlnLCWY5plZQNAYJvXuv3EHvDSyF5cQVNO/By+gkw83lvgTlW0Vgdv46cT+vkTomT7i/e72MFXfjZ70gPnWR170HVbAMn+6vpDFw4EKI+kJBEu+75MsWDs+5PzFzQeFSaGNs0i2Otjtll6QD5i+fjZMkr5H2TCpGOW8PhP5/IH5eO86YLvT9D2GLxTdv7Ekz1Oiux3BDEPFcGPVEErfgf7lHTkyn7G8koObPsZvPMy5yNlgw19PbeuEenDFqdg+zWKCyJ4yEkdTvaJthEglpA30DZD6Nx9q1OiMZfKJdZu8iMolXIaFpVKppnor7Pvg+TA1g8q4ZX+629Ug1tqYPykUIUXylCIJYvi87s/KnXwHyYd3MGZFFsj26PBD4I+aSF73HP639dOkbKXJISNFte2jTBKKKjDAK2Cyb3somTxCgFbT8aXuxDUxiLKJa00H/P2LAV4Qofgmmr0RdYmXDf+OPeEapW/6oWKvuIt5PEzeu/fR6hj/AFTYhYx4PBz93iVn4SkwUfU2+1duhoz2E3mb5mn+lHEYuDWa19daV8QAFcOktz/qtIrPk+v2C9z4F+MkKzufvX17hZVXOBE55wajQiBauNINxKaKuyn1ktbrYCsFYwMKChqRh9Suxeyvn0TM7qgwETj3SD5/6rPrud/1bYc6wgGrKXb6vDC+v7Gs0STEocQNzdZLkStzGkuOwsz1zIGE7aMP39Ges98swaA6md0Xz1+eelc14HM5aUwfynEbw1X6HIQM9QtxX3MXs0WlQkYu3+myrJnLFKj5QET2ZL2NrOvyjLP3aWEiwPgV6rW/zAC4eTi7CHbCKLlo/UkG5ioLhiIbxBhl1UVw7p4X4ZblwJpjaQ/T6x0r2tVZx9jX80i2GHf95H/Av6T4/LU6VEl0AR+xSegPF9PZfANt4dqyOn8QpQhtLJHX4q/t2u1D4sOSr2A6CfcLBn+GLLMdza/P9zHinKcgMRP+ipoRijIH8mTIZ7IHGkWitmmNyLdKJq751qsG0sLciod8H1kXvaC9Wmd4Iu8KwNTYmzpLbD2elk89H4nvOd5ZdLGsWcKooOz5V72AC63e02C7qwWuHIk11CZAVLzVH8bM3pjJL1ngV9J1I/KGxaiuxSMIEl/rGMLUG/zFFADxoSD/OiFdZXT1ZrVhUU2iLyzfFE4OTKfaZWlfvwR9CIDA0VvBW3F91USA8hc83jA+HkiJGsJIDMD+T47enq+oEmm+2WMIcXmQ/5brYMJT3OckqiMKZPXMofeR1d0jgebxEV0bIBx4987LubdtEcc8TjplQkitQkJla44LsOKmZZaI1v4t5ua0SU8uaSdny1YoyMM4e6bhVxD3v/VpYSv4nGnz4JRdXQpOZHR65JFFOOFYle+kS29eDZo7QZr99YLyRH1MI1iCDWma5MhcuZrkDPtHcGVJvmDOoa5cywRiCHt6PSESReimYeKgXpmQice9ohSaq0cV+2WDgxX1Y4VsYUdf6PlIz0Buj4apQB6OI/gr0oMqIvutJGXNbG5NSonywbThtY9YICzH4GubbDfCKQsQI3JzGvXfVAHIHziodHkXYVfMqmj2Gh8ox8I8xYC4Gzn2dey3UX0Cb/vlmRlIaJU6r0Pqq/V0kiCm087NxMwlm/STYGTPOdcMaJLmAGpJUAl15GXw4uC1QEDfRNOYGzuV1I5IaDb/ykfcNAx3G9R/1Nka/rIf5L78g0xQNmF8/mFTeMDBilWI5SH8EVMugzVeOd/+knd5HYzilpxYc72Hj88KAzHQc2tmW7Q/EuFbs9WTwivNLdgds2AFT2f1dBPhV9anlwwYUQcyOliSiiKp0Su4ENvzJ1u1V/YnQriSWdKb+qGb+tQlMuHqiaGlpDuN8J9+qej82jSrqiiCwTp448GrHxb2yd6MnQUh9LTwaHXaX+3RFytRP/anaD1P7UECQXJpw2Kd9rQSaWjkxUzZpea14m+SnUDzYSpjvmyUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNWAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 4, "num_timesteps": 1000, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677136074675499674, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALxkoQNNf3j4CNZE/WaUbPx7X3r5VYcK+zAkQQC/dTL+8f38+QgazvoBZdz8dSDq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAChQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]]", "desired_goal": "[[ 2.626537 0.43432483 1.1344302 ]\n [ 0.60799176 -0.43523496 -0.37964883]\n [ 2.250598 -0.80025 0.2495107 ]\n [-0.34965712 0.9662094 -0.72766286]]", "observation": "[[0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAocUQPg2Agj2o4X8+XiKYPFYEGrxKNwk+uLPyPS06JL2zhjo+I5QivXAZ3j2G4ds9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1413789 0.0637208 0.24988425]\n [ 0.01857108 -0.00940045 0.13399997]\n [ 0.11850685 -0.04009454 0.18215446]\n [-0.03969206 0.10844696 0.10736375]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 20, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISYCaWrYWLsCUhpRSlIwBbJRLMowBdJRHQCJRCMPz4Dd1fZQoaAZoCWgPQwjekEYFToYowJSGlFKUaBVLMmgWR0AiFCMxXXAedX2UKGgGaAloD0MIxy5RvTVoJsCUhpRSlGgVSzJoFkdAIdsMiKR+0HV9lChoBmgJaA9DCPbsuUxNQiTAlIaUUpRoFUsyaBZHQCGfUe+23KB1fZQoaAZoCWgPQwh00ZDxKOUcwJSGlFKUaBVLMmgWR0AmBHzYmLLqdX2UKGgGaAloD0MI/irAd5tnHsCUhpRSlGgVSzJoFkdAJcbkwN9YwXV9lChoBmgJaA9DCJW2uMZnZjDAlIaUUpRoFUsyaBZHQCWLeIl+mWN1fZQoaAZoCWgPQwhKQiJt4wcnwJSGlFKUaBVLMmgWR0AlTW+XZ5AydX2UKGgGaAloD0MIkfP+P06IF8CUhpRSlGgVSzJoFkdAKE60IC2c8XV9lChoBmgJaA9DCFlPrb66+h/AlIaUUpRoFUsyaBZHQCgQ9RrJr+J1fZQoaAZoCWgPQwhlw5rKoigswJSGlFKUaBVLMmgWR0An1TBInSfEdX2UKGgGaAloD0MINdQoJJkdI8CUhpRSlGgVSzJoFkdAJ5ddmg8KX3V9lChoBmgJaA9DCN7oYz4giCTAlIaUUpRoFUsyaBZHQCqU052hZhd1fZQoaAZoCWgPQwhszOuIQ8YqwJSGlFKUaBVLMmgWR0AqV0SRKYiQdX2UKGgGaAloD0MI61VkdEDKI8CUhpRSlGgVSzJoFkdAKhycbzbvgHV9lChoBmgJaA9DCLhX5q26divAlIaUUpRoFUsyaBZHQCnfUx20Re11fZQoaAZoCWgPQwiwjuOHSlsswJSGlFKUaBVLMmgWR0As2FqzqrzYdX2UKGgGaAloD0MIQgjIl1ChKcCUhpRSlGgVSzJoFkdALJqLKmsNlXV9lChoBmgJaA9DCEJ79fHQZyXAlIaUUpRoFUsyaBZHQCxenIhhYvF1fZQoaAZoCWgPQwj4wfnUsbImwJSGlFKUaBVLMmgWR0AsIKpDNQj2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV0wIAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUZS4="}, "_n_updates": 225, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7f70fffbf4c0>", "add": "<function DictReplayBuffer.add at 0x7f70fffbf550>", "sample": "<function DictReplayBuffer.sample at 0x7f70fffbf5e0>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7f70fffbf670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f70fffb5c60>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -3.0, "ent_coef": "auto", "target_update_interval": 1, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}} |