happycoding commited on
Commit
add2dcd
1 Parent(s): 12fcc8f

Commit of SAC 1M steps

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -14.51 +/- 3.18
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -0.29 +/- 0.08
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7f70fff769d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f70fff753c0>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAC2eJr3k8+mXV4kxdFIEtIAmDNaMsLzz/jQc/ACIojEStq/HdHRADwDC2kqTQPmI1rAOcMvgirMV1xHA/4Ji0u6l1nbvztbt2dGCvblP9FVQLO+yBkYZoC96rNx/2X6XRz+CXtq6aLHGnnenw8trQ55YGdO8SL52IdZl6L9rojryIeAhPzkTa/kvca2r/34gIM+9OTRxirijJh4rwftFU7t8/eeqEbHagSyZra+JU8rAUbHsKopgu0nqIp+nXSSSw2hko9euo52SanpofKPP09FiFDJywCq2xU0peteYAKglECW7gAZAIyUYy+1WMuwWmVyTarXcOQepT/yW+/Y6SSDUbpp+C3yl9rsJBDg0v3WnPgIRgeW/lxrXXEc+iuXc8hLT2thMWjsMIiDHyZCjxSnNbXewkhI96vTpRZPYD+gST6g3hJVO2uWdpQY6VpmwDRKbvRqsOzvR3Cv/bN4ary016gjetk4RVOb/VxPN29ULb/jFQ8AwuXHt/LK49LBUkeVALiEZkAXDVJt65ifcsU+0KKoEaIcZuArSMjgu+THzLCNvu/DVacX28K+2MHt/iUMcpJtRpmGUnnNDw9Vzdie/dpEke/XMv8mM6zD+E83ecupgt5Dit++bnO1Gj7/idqpy87HVYzO73gGt3hsbUFqueHmIllR3q3OEgUEqJ0cz/t4y6IYf8SCuWp3bssU6m0grW3NALsSctOwrlWv+wNrXMN6zfk+rk3wjdIeAEM5r6AcuL00FdQU3O688do3OKLt6iS8O3lhrWfWo0g6mGMLsmQwAhjz6DkppFgATqsy+H9u7lvw57GiRO8D3S3ZsAg0kQLTqR1Hur0o9f7pKzLUi/3VDam1G/WP+qYrDRQ2PVBSHnXbPzj34HZLINkX47JcOM6SfeaAxdyno0EP6ZVnqYiP9oQ53GRBgeT6T3EdgMbEeDzLrNeSon4BEHCopkS83NjwOdH05kDx9JI6IkAnzmZbWyP0ugMXY2Jp5u5z18iAGdSYwulXz8FxeR5QAimFwhu0OXJIMGxczAjTT/0JO56VSo6BXi6cVWvLuR7v1Ms34OvZVN2y0f+INwnWE88+DLbRP+x9AopOesBzNLzPIP7hTPvp8VH5tVvLagMMeNRdjyal68VcE+ObkS5AF3cHRVBbt8J+vbJAlvSqgtLAkeeGARPXUzaKLZiHRjMwO9xwURoBTceF9CxIxGrZfsotlS5kSoC551HxYj+ZMDy6DGZGsJBQsGTdBiaky4U1dOp6ebrZ7sxdVx8f661Tfa2ONHhzrOwlwYlepUkJ5fa4xFwP822WD8plKMMPL9JLoA8PI6PCZFu0imdavA0D7MNTMye/1vlnLCWY5plZQNAYJvXuv3EHvDSyF5cQVNO/By+gkw83lvgTlW0Vgdv46cT+vkTomT7i/e72MFXfjZ70gPnWR170HVbAMn+6vpDFw4EKI+kJBEu+75MsWDs+5PzFzQeFSaGNs0i2Otjtll6QD5i+fjZMkr5H2TCpGOW8PhP5/IH5eO86YLvT9D2GLxTdv7Ekz1Oiux3BDEPFcGPVEErfgf7lHTkyn7G8koObPsZvPMy5yNlgw19PbeuEenDFqdg+zWKCyJ4yEkdTvaJthEglpA30DZD6Nx9q1OiMZfKJdZu8iMolXIaFpVKppnor7Pvg+TA1g8q4ZX+629Ug1tqYPykUIUXylCIJYvi87s/KnXwHyYd3MGZFFsj26PBD4I+aSF73HP639dOkbKXJISNFte2jTBKKKjDAK2Cyb3somTxCgFbT8aXuxDUxiLKJa00H/P2LAV4Qofgmmr0RdYmXDf+OPeEapW/6oWKvuIt5PEzeu/fR6hj/AFTYhYx4PBz93iVn4SkwUfU2+1duhoz2E3mb5mn+lHEYuDWa19daV8QAFcOktz/qtIrPk+v2C9z4F+MkKzufvX17hZVXOBE55wajQiBauNINxKaKuyn1ktbrYCsFYwMKChqRh9Suxeyvn0TM7qgwETj3SD5/6rPrud/1bYc6wgGrKXb6vDC+v7Gs0STEocQNzdZLkStzGkuOwsz1zIGE7aMP39Ges98swaA6md0Xz1+eelc14HM5aUwfynEbw1X6HIQM9QtxX3MXs0WlQkYu3+myrJnLFKj5QET2ZL2NrOvyjLP3aWEiwPgV6rW/zAC4eTi7CHbCKLlo/UkG5ioLhiIbxBhl1UVw7p4X4ZblwJpjaQ/T6x0r2tVZx9jX80i2GHf95H/Av6T4/LU6VEl0AR+xSegPF9PZfANt4dqyOn8QpQhtLJHX4q/t2u1D4sOSr2A6CfcLBn+GLLMdza/P9zHinKcgMRP+ipoRijIH8mTIZ7IHGkWitmmNyLdKJq751qsG0sLciod8H1kXvaC9Wmd4Iu8KwNTYmzpLbD2elk89H4nvOd5ZdLGsWcKooOz5V72AC63e02C7qwWuHIk11CZAVLzVH8bM3pjJL1ngV9J1I/KGxaiuxSMIEl/rGMLUG/zFFADxoSD/OiFdZXT1ZrVhUU2iLyzfFE4OTKfaZWlfvwR9CIDA0VvBW3F91USA8hc83jA+HkiJGsJIDMD+T47enq+oEmm+2WMIcXmQ/5brYMJT3OckqiMKZPXMofeR1d0jgebxEV0bIBx4987LubdtEcc8TjplQkitQkJla44LsOKmZZaI1v4t5ua0SU8uaSdny1YoyMM4e6bhVxD3v/VpYSv4nGnz4JRdXQpOZHR65JFFOOFYle+kS29eDZo7QZr99YLyRH1MI1iCDWma5MhcuZrkDPtHcGVJvmDOoa5cywRiCHt6PSESReimYeKgXpmQice9ohSaq0cV+2WDgxX1Y4VsYUdf6PlIz0Buj4apQB6OI/gr0oMqIvutJGXNbG5NSonywbThtY9YICzH4GubbDfCKQsQI3JzGvXfVAHIHziodHkXYVfMqmj2Gh8ox8I8xYC4Gzn2dey3UX0Cb/vlmRlIaJU6r0Pqq/V0kiCm087NxMwlm/STYGTPOdcMaJLmAGpJUAl15GXw4uC1QEDfRNOYGzuV1I5IaDb/ykfcNAx3G9R/1Nka/rIf5L78g0xQNmF8/mFTeMDBilWI5SH8EVMugzVeOd/+knd5HYzilpxYc72Hj88KAzHQc2tmW7Q/EuFbs9WTwivNLdgds2AFT2f1dBPhV9anlwwYUQcyOliSiiKp0Su4ENvzJ1u1V/YnQriSWdKb+qGb+tQlMuHqiaGlpDuN8J9+qej82jSrqiiCwTp448GrHxb2yd6MnQUh9LTwaHXaX+3RFytRP/anaD1P7UECQXJpw2Kd9rQSaWjkxUzZpea14m+SnUDzYSpjvmyUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNWAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 4, "num_timesteps": 1000, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677136074675499674, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALxkoQNNf3j4CNZE/WaUbPx7X3r5VYcK+zAkQQC/dTL+8f38+QgazvoBZdz8dSDq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAChQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]]", "desired_goal": "[[ 2.626537 0.43432483 1.1344302 ]\n [ 0.60799176 -0.43523496 -0.37964883]\n [ 2.250598 -0.80025 0.2495107 ]\n [-0.34965712 0.9662094 -0.72766286]]", "observation": "[[0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAocUQPg2Agj2o4X8+XiKYPFYEGrxKNwk+uLPyPS06JL2zhjo+I5QivXAZ3j2G4ds9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1413789 0.0637208 0.24988425]\n [ 0.01857108 -0.00940045 0.13399997]\n [ 0.11850685 -0.04009454 0.18215446]\n [-0.03969206 0.10844696 0.10736375]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 20, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISYCaWrYWLsCUhpRSlIwBbJRLMowBdJRHQCJRCMPz4Dd1fZQoaAZoCWgPQwjekEYFToYowJSGlFKUaBVLMmgWR0AiFCMxXXAedX2UKGgGaAloD0MIxy5RvTVoJsCUhpRSlGgVSzJoFkdAIdsMiKR+0HV9lChoBmgJaA9DCPbsuUxNQiTAlIaUUpRoFUsyaBZHQCGfUe+23KB1fZQoaAZoCWgPQwh00ZDxKOUcwJSGlFKUaBVLMmgWR0AmBHzYmLLqdX2UKGgGaAloD0MI/irAd5tnHsCUhpRSlGgVSzJoFkdAJcbkwN9YwXV9lChoBmgJaA9DCJW2uMZnZjDAlIaUUpRoFUsyaBZHQCWLeIl+mWN1fZQoaAZoCWgPQwhKQiJt4wcnwJSGlFKUaBVLMmgWR0AlTW+XZ5AydX2UKGgGaAloD0MIkfP+P06IF8CUhpRSlGgVSzJoFkdAKE60IC2c8XV9lChoBmgJaA9DCFlPrb66+h/AlIaUUpRoFUsyaBZHQCgQ9RrJr+J1fZQoaAZoCWgPQwhlw5rKoigswJSGlFKUaBVLMmgWR0An1TBInSfEdX2UKGgGaAloD0MINdQoJJkdI8CUhpRSlGgVSzJoFkdAJ5ddmg8KX3V9lChoBmgJaA9DCN7oYz4giCTAlIaUUpRoFUsyaBZHQCqU052hZhd1fZQoaAZoCWgPQwhszOuIQ8YqwJSGlFKUaBVLMmgWR0AqV0SRKYiQdX2UKGgGaAloD0MI61VkdEDKI8CUhpRSlGgVSzJoFkdAKhycbzbvgHV9lChoBmgJaA9DCLhX5q26divAlIaUUpRoFUsyaBZHQCnfUx20Re11fZQoaAZoCWgPQwiwjuOHSlsswJSGlFKUaBVLMmgWR0As2FqzqrzYdX2UKGgGaAloD0MIQgjIl1ChKcCUhpRSlGgVSzJoFkdALJqLKmsNlXV9lChoBmgJaA9DCEJ79fHQZyXAlIaUUpRoFUsyaBZHQCxenIhhYvF1fZQoaAZoCWgPQwj4wfnUsbImwJSGlFKUaBVLMmgWR0AsIKpDNQj2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV0wIAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUZS4="}, "_n_updates": 225, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7f70fffbf4c0>", "add": "<function DictReplayBuffer.add at 0x7f70fffbf550>", "sample": "<function DictReplayBuffer.sample at 0x7f70fffbf5e0>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7f70fffbf670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f70fffb5c60>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -3.0, "ent_coef": "auto", "target_update_interval": 1, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7fbaa748cdc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbaa7485d50>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAB88xtSe2DteaIYtuCdvfDVQxLoKCvduNublE7TDhsRnpTlnCSAdV3Ru7UkmjWGi8Dt5b6S1/+4eqXR+zRWtA/nJRd9B8xInttH7mpvpGlDrYc0kYJoYdkiIaF67WKf46apduujfOw9YHUQ/7advq2eT8QlUyY0vO1DBB9YV261656pfqNZHCAsySwnrRqmh4m/IwxZHzjRzRUf0wxAaiqcuui7EE+5DL8yM2eA1fDRWidMmo+wnlP2LtomKfLs91GB+n3XIJA+ovn1DL/17klcv0/Qet8haDP6um3ClPYJtUhnQh3vSFMT4yM7wxl1gjJ6FOmL0vqwRHA5EyVce6j5dp8oKhi0jsxruhyBcEwrqFa1ABzJrGWjkSLoEeSLmGWDOxKjnq1kBv5xuJWZDTwzSZ1EVW2iJ450prKG+5oknbxnsjJ0dktdKjSRaFPqyVGi8mSE6FrCC+ad2da/rQB4wLF6ITOfmfOhvymI8hlLg2iDPHLuXg31LmWBby578StRD0JX4MuFjhwv/8g8YKzXqL2HmzFmTy5HGJ3EbrJFnQgVnTOG4IeckqI3S9Z2x09Zd2q7uxMiTHeEXFqGjrjPruWKiN8OQVbRFMxDWw7/u4WAinQgt50nFbkbKH2CXDhQq/YnzbteZWYos1zJBygMHXIukUvdJngVbKv7JejM6l0sCtpfQjklay2soT7QKSKDCJAl8qwXaeNB+t8D3eCQ+w5dIH9w/llIK2Aqu+4kCHHRD7uaDAd3EcxeE/91YBWEYqtWAc5hsHAzpHm1XWNxFOIuHlqTrTe5tY/qWcsAC6JYbTpAJtjl6xYxOr6jQ7htYm6dFhzBIi9908/TOqxCLHg3QJs4GE9LqN/ADLvtMLVDsGV/m2LI/F2TPzW3M2LLhS4IzY0kSzp4Si6VFEGS9PdVbYb3mkP2CVyXaBvCoUJs/+loMEMdLuazmkkedu6d6/Go/GiN6uyBovUoXxVJSfhgLNdf156JZlTYjXjK1sThmwQ2Rs+sVTwBgb+xJ9ehDaLa9bmZH5uKSgzSKnJsiFxTtcLInR8NgOleCm2vZjt3dLxWDkENszj7/KLCQg8/WIn1Mh52L1QtIOLbP8Uk7s3TlsaGi6RA5ReLcN5evs1lA8bQMDwOnWVpH6IsJY10YolzYT7M1EEDbpCBqrOfaNLy9EDRsKGojcUlpc7JhK6V9gznYAFrkAIxO71Khi0GcLsRmMYO2lkVC3yMOrt+qLtG4zb8VanFG8csgppnngffdQtxOE/k7aCc1BqadeoYWS5yGCfy58raDsvnqM9ALMX2HAOeVryQUJTnEVGWW4wc4aSlIXjs07EbLUP/gH2YQikAeRTtloCH2MANjBzCSCFUg9PhUTvqw/yf3ize1roZa/SMge2rBY1c0onTelN+FMuiiam/bTmyAxmSgKJw/QHZwj90sSLjbZmaaPCFdsd5NdHyXzsAH9K9R6RwlGn82ykJra0IIcbievGG42vDU+1ucxAw5x8TwiFuJiDcclq0TVwFIcQXgaL4m2ifd8cbATTlBs9+IsXyvUOHKQ/AM0OjOosFZl/IN3CjPqrHElutA99Yg2AuLQX8qlJLDBxbe8yBFL9oxqqJLENSDsZg2jEXZUkTHjgSnlDwA73iAvya4naFObB59q32PAM1Azr2CiiW/0BXO3dvuG804ccqBkMRuRpZQZGSl1dm5jrZo/FRGbw1gbt0QrtzAl8TbmazZoKSxEocHqSgixr9se3mf6PG/ALJevyR6+70QCR53GnqS9asChtGh63z1hxrYoPxODlXNvRvbJbJWtUYeaLHEqkbwNNq5aCI2qdYV2LX/CompkDRkryG8gTKOXxywoaoMAi5DGka/CAxuElUFkarFp5vlKjxTOndcSUpQ2Rd9fXIeoFujxE2enYLlQoCMRZkb8sZyOrtn9DJUtwyq5Uge0Op+dTAERPHpWkn7DZqaNfSd1EQqC7XUgIjlcKR3nAIxGBuOC6DuD6O1rC45goY3aMhjnbtm5rBryMsp7vaqNxI39T1WJV/fNd3qO9VaNYTX6Ut3s5hiJzWC/4jcsJ63Ulyo6YiRUhEnI0MqbJ0WqrQwUGXiFCZryGBcBSNUr8p+9eLc4I9/A7p1Wo83o3+mDpvumv+4ubuPmwpnZHaoaOtq7X4mJO+qGcL3HrNnxxJdBZWB8uLWnjOjDKG9KTswZV6mJ5N+nB+B70mvmREbK3WZVX++UZFDiByxB+xiL3xX1stqd2C9N5iY5bwGV+DZQPAFiAjsyY0jtb67ZuUzD2F3HE836pfenoSBl1lFbYLkFAlWyHiWMtyGQQuvS4hbbuqIXsYXhkDJTU76USHoH7YzKgENz3e250CmrKDKelqdgXZwQgs6/Is5ffjneXjfrycBS6K+Ll5Mz5nPUJCPMuLcQasu5MrNGd31U+GQoCAPLpe11Vk3CbfgJJpU2sMnGo24WF3gE6uUTWGgH8GONXiTwFYL9KWzHQfaDM9hXd0/gTR2Pahfe7ighLKMcefAIEgT/6Slaqr8u3xVADE4AxZv+u8uhNU9su+12+k/q6n/iroQM87PT5putQcd1Mf6LSWQE5Lm4WvOHNBaY1Mwn3Swm9XutnWYkeVOYi3XB/C3/h5CbYGWQsiaQqXRz5rKGmnJtmGxoAmfDdlVnY3CFvNDZe+pw8TbU1qvU/9XPRI3Gad940m0drV8A7Ai3K74F1w7YqJMhQpjvQPgqHESoPyC+8r6F9A2n0wBwNPj1yOOgw6fu2s2jZgA0vrgu/w27PClJnqC0sJWv1SDUusMPC9kIeIZ2fNfTFePRLk3oGit08me8ZumFflbUCoAJERHSNVwg2b+cM1ngS/0l9yOAthfbAKlce6HN5QyxiJoPOeTnirhdSaCkJsHOkwoZ8tw7P3BcB1w0Oop2u2xydSRCh9FYh2GozthQA8XzRmANV8hyXu1q6JUjCKMFbkIERy+bSw279dBPEh78buY60J/6vand4dO0CkUbMYeusE8mlkmBgbCogj8CktcZjxURYtTfz3M3YFLYIfeoH7aAIOJmlqRVjt1t2JCl8j1yLHVaQfLdj+axMBeX7VlD2QpFTGtq6lc3wahLmESM2V1LykaWfw6yP3fJfoaT2B6qK11+GjvSLkai6z094xHBLv0Uk6KTQJGhIislCEgE0XOLGSWO6Z8l7Kr8bbFTwrf2cJVfPpr15sEZ6nQ5PGwPL8iIx4nILi1i3CwNRRvYp7h4G5ZxK2IsQ7wrGYhzH8NEHBpJ0xMPhu5VTKMGQISzwVgUY50r1g0KDIGWsANExFkRbb4hgr1zArZn13FePqj5cC2uKUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNWAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677140126548072950, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAI3TaPtN0Pzx1Uww/I3TaPtN0Pzx1Uww/I3TaPtN0Pzx1Uww/I3TaPtN0Pzx1Uww/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAT4Wnv7y/Vb6Ux9A/ld8RvVK2Wz+Nlog/ocTRv0z3qD/lUNE/enCxP3D8n79FoZk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAjdNo+03Q/PHVTDD9YJaI9Ci/sOgy5g7ojdNo+03Q/PHVTDD9YJaI9Ci/sOgy5g7ojdNo+03Q/PHVTDD9YJaI9Ci/sOgy5g7ojdNo+03Q/PHVTDD9YJaI9Ci/sOgy5g7qUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4266673 0.01168557 0.54814845]\n [0.4266673 0.01168557 0.54814845]\n [0.4266673 0.01168557 0.54814845]\n [0.4266673 0.01168557 0.54814845]]", "desired_goal": "[[-1.3087558 -0.20873922 1.6310906 ]\n [-0.03561362 0.85825074 1.0670944 ]\n [-1.6388131 1.3200469 1.6352812 ]\n [ 1.386245 -1.2498913 1.200234 ]]", "observation": "[[ 0.4266673 0.01168557 0.54814845 0.07917279 0.00180194 -0.00100497]\n [ 0.4266673 0.01168557 0.54814845 0.07917279 0.00180194 -0.00100497]\n [ 0.4266673 0.01168557 0.54814845 0.07917279 0.00180194 -0.00100497]\n [ 0.4266673 0.01168557 0.54814845 0.07917279 0.00180194 -0.00100497]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGs7lvfhdm7ztyJQ+mwUYu1xwlj0aiXc+JhMQvi9c6D2D+JQ+qpf2PfSJ371mrIE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11220951 -0.01896571 0.29059544]\n [-0.00231967 0.0734565 0.24173394]\n [-0.14069805 0.11345708 0.2909585 ]\n [ 0.12040646 -0.10914984 0.25326842]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 20000, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFD5bBwd73b+UhpRSlIwBbJRLMowBdJRHQLmDA48EFGJ1fZQoaAZoCWgPQwji578Hr13Yv5SGlFKUaBVLMmgWR0C5guUadc0MdX2UKGgGaAloD0MIehnFcksr5L+UhpRSlGgVSzJoFkdAuYLF+/gzg3V9lChoBmgJaA9DCDy+vWvQF+W/lIaUUpRoFUsyaBZHQLmCpyOaOPx1fZQoaAZoCWgPQwjG+ZtQiIDiv5SGlFKUaBVLMmgWR0C5hCp0CA+ZdX2UKGgGaAloD0MIO3MPCd/73r+UhpRSlGgVSzJoFkdAuYQL+AEt/XV9lChoBmgJaA9DCJW5+UZ0z9u/lIaUUpRoFUsyaBZHQLmD7OGj9GZ1fZQoaAZoCWgPQwjvjSEAOPbev5SGlFKUaBVLMmgWR0C5g8221D0EdX2UKGgGaAloD0MI626e6pCb4L+UhpRSlGgVSzJoFkdAuYVO4oZydXV9lChoBmgJaA9DCN51NuSfGd6/lIaUUpRoFUsyaBZHQLmFMH0K7Zp1fZQoaAZoCWgPQwg7jh8qjZjVv5SGlFKUaBVLMmgWR0C5hRFb3XZodX2UKGgGaAloD0MIyhtg5jv427+UhpRSlGgVSzJoFkdAuYTyKjzqbHV9lChoBmgJaA9DCOFh2jf31+K/lIaUUpRoFUsyaBZHQLmGeayKNyZ1fZQoaAZoCWgPQwi7JTlgV5Pdv5SGlFKUaBVLMmgWR0C5hltLlFMJdX2UKGgGaAloD0MIQfM5d7te3L+UhpRSlGgVSzJoFkdAuYY8PpY9xXV9lChoBmgJaA9DCDkn9tA+VtO/lIaUUpRoFUsyaBZHQLmGHR4hUzd1fZQoaAZoCWgPQwgrweJw5tfhv5SGlFKUaBVLMmgWR0C5h6XF1jiGdX2UKGgGaAloD0MIB++rcqFy4L+UhpRSlGgVSzJoFkdAuYeHUQTVUnV9lChoBmgJaA9DCGTmApfHmti/lIaUUpRoFUsyaBZHQLmHaDR+jM51fZQoaAZoCWgPQwhJTbuYZrrYv5SGlFKUaBVLMmgWR0C5h0kDIRywdX2UKGgGaAloD0MIJ9pVSPlJ4r+UhpRSlGgVSzJoFkdAuYjNTyauwHV9lChoBmgJaA9DCKnZA63AkNC/lIaUUpRoFUsyaBZHQLmIryc0+C91fZQoaAZoCWgPQwhNo8nFGFjUv5SGlFKUaBVLMmgWR0C5iJCPyTY/dX2UKGgGaAloD0MIejTVk/lH27+UhpRSlGgVSzJoFkdAuYhx5eJHiHV9lChoBmgJaA9DCJRrCmR2FuC/lIaUUpRoFUsyaBZHQLmKaK0lZ5l1fZQoaAZoCWgPQwi8z/HR4ozqv5SGlFKUaBVLMmgWR0C5ikqhHskZdX2UKGgGaAloD0MIOwDirl5F2r+UhpRSlGgVSzJoFkdAuYor58BuGnV9lChoBmgJaA9DCAuz0M5pFtO/lIaUUpRoFUsyaBZHQLmKDR15jYt1fZQoaAZoCWgPQwjV6NUApSHiv5SGlFKUaBVLMmgWR0C5jDcKkVN6dX2UKGgGaAloD0MIoUj3cwry4r+UhpRSlGgVSzJoFkdAuYwZLOAy23V9lChoBmgJaA9DCIkLQKN06eK/lIaUUpRoFUsyaBZHQLmL+qIrOJN1fZQoaAZoCWgPQwiefeVBegrhv5SGlFKUaBVLMmgWR0C5i9wTAWSEdX2UKGgGaAloD0MIlYJuL2kM5L+UhpRSlGgVSzJoFkdAuY4SeCkGinV9lChoBmgJaA9DCAsMWd3qOd2/lIaUUpRoFUsyaBZHQLmN9IJZ4fR1fZQoaAZoCWgPQwgPJsXHJ2Tfv5SGlFKUaBVLMmgWR0C5jdXo5ggHdX2UKGgGaAloD0MINWH7yRgf0r+UhpRSlGgVSzJoFkdAuY23H3lCC3V9lChoBmgJaA9DCJuvko/dBeK/lIaUUpRoFUsyaBZHQLmPgjvuw5h1fZQoaAZoCWgPQwhUc7nBUIfXv5SGlFKUaBVLMmgWR0C5j2PATIvKdX2UKGgGaAloD0MIa2XCL/Xz3b+UhpRSlGgVSzJoFkdAuY9EpPRAr3V9lChoBmgJaA9DCAPPvYdLjtm/lIaUUpRoFUsyaBZHQLmPJXNTtLN1fZQoaAZoCWgPQwhE3JxKBoDev5SGlFKUaBVLMmgWR0C5kLwT/Q0GdX2UKGgGaAloD0MI+z+H+fIC37+UhpRSlGgVSzJoFkdAuZCdn7Hhj3V9lChoBmgJaA9DCBjqsMItH9m/lIaUUpRoFUsyaBZHQLmQfoBJZnt1fZQoaAZoCWgPQwgm4NdIEgTkv5SGlFKUaBVLMmgWR0C5kF+9FnZkdX2UKGgGaAloD0MIkKSkh6HV37+UhpRSlGgVSzJoFkdAuZHmQSzw+nV9lChoBmgJaA9DCCZzLO+qh+G/lIaUUpRoFUsyaBZHQLmRx+otL+R1fZQoaAZoCWgPQwjqBgq8k0/jv5SGlFKUaBVLMmgWR0C5kajQqqffdX2UKGgGaAloD0MItydIbHcP2r+UhpRSlGgVSzJoFkdAuZGJnxri2nV9lChoBmgJaA9DCNwr81Zdh+S/lIaUUpRoFUsyaBZHQLmTJVjI7vJ1fZQoaAZoCWgPQwjj/bj98snjv5SGlFKUaBVLMmgWR0C5kwcv24/edX2UKGgGaAloD0MInMO12sNe5b+UhpRSlGgVSzJoFkdAuZLoXO4XoHV9lChoBmgJaA9DCO9yEd+JWdi/lIaUUpRoFUsyaBZHQLmSySsr/bV1fZQoaAZoCWgPQwis5c5MMJzhv5SGlFKUaBVLMmgWR0C5lGKuSwGGdX2UKGgGaAloD0MInYNnQpPE27+UhpRSlGgVSzJoFkdAuZREP07KaHV9lChoBmgJaA9DCJiIt86/Xd6/lIaUUpRoFUsyaBZHQLmUJS0BwMp1fZQoaAZoCWgPQwie0sH6P4fnv5SGlFKUaBVLMmgWR0C5lAZy2hIwdX2UKGgGaAloD0MIC0eQSrGj1b+UhpRSlGgVSzJoFkdAuZWMiQkonnV9lChoBmgJaA9DCH5WmSmtv9+/lIaUUpRoFUsyaBZHQLmVbh4t6HF1fZQoaAZoCWgPQwiEDOTZ5Vvdv5SGlFKUaBVLMmgWR0C5lU8TSLIgdX2UKGgGaAloD0MIi/7QzJNr1L+UhpRSlGgVSzJoFkdAuZUv5P/JeXV9lChoBmgJaA9DCARyiSMPxOG/lIaUUpRoFUsyaBZHQLmWxIZIg/11fZQoaAZoCWgPQwgg8MAAwofjv5SGlFKUaBVLMmgWR0C5lqYsqaw2dX2UKGgGaAloD0MIYVPnUfH/5b+UhpRSlGgVSzJoFkdAuZaHXL/0d3V9lChoBmgJaA9DCOkrSDMWTdK/lIaUUpRoFUsyaBZHQLmWaCfYjB51fZQoaAZoCWgPQwikN9xHbk3Sv5SGlFKUaBVLMmgWR0C5l+3iNsFddX2UKGgGaAloD0MIT8x6MZQT1L+UhpRSlGgVSzJoFkdAuZfPbh3qzXV9lChoBmgJaA9DCBbbpKKxduS/lIaUUpRoFUsyaBZHQLmXsFX7tRh1fZQoaAZoCWgPQwh0YaQXtfvev5SGlFKUaBVLMmgWR0C5l5Ex7AtWdX2UKGgGaAloD0MIxccnZOdt4L+UhpRSlGgVSzJoFkdAuZlF6Ww/xHV9lChoBmgJaA9DCDGXVG03wdy/lIaUUpRoFUsyaBZHQLmZJ8274BV1fZQoaAZoCWgPQwjvVpboLLPXv5SGlFKUaBVLMmgWR0C5mQmrKeTWdX2UKGgGaAloD0MI2gBsQIS44r+UhpRSlGgVSzJoFkdAuZjq9+PRzHV9lChoBmgJaA9DCOV9HM2Rlde/lIaUUpRoFUsyaBZHQLma+pmVZ9x1fZQoaAZoCWgPQwhiFASPb+/Xv5SGlFKUaBVLMmgWR0C5mtyfYjB3dX2UKGgGaAloD0MIaahRSDKr2r+UhpRSlGgVSzJoFkdAuZq97dBSk3V9lChoBmgJaA9DCH0fDhKifNq/lIaUUpRoFUsyaBZHQLmanzDn/1h1fZQoaAZoCWgPQwgEO/4LBAHev5SGlFKUaBVLMmgWR0C5nM4Ju2qldX2UKGgGaAloD0MI5UUm4NfI4r+UhpRSlGgVSzJoFkdAuZywE2YOUnV9lChoBmgJaA9DCOkLIef9f9i/lIaUUpRoFUsyaBZHQLmckZfD1oR1fZQoaAZoCWgPQwg/G7luSnnWv5SGlFKUaBVLMmgWR0C5nHLzwtrcdX2UKGgGaAloD0MIVkRN9Pko3L+UhpRSlGgVSzJoFkdAuZ6KYplSTHV9lChoBmgJaA9DCOLMr+YAQeK/lIaUUpRoFUsyaBZHQLmea/fwZwZ1fZQoaAZoCWgPQwiqukc2V83Uv5SGlFKUaBVLMmgWR0C5nkziS7oTdX2UKGgGaAloD0MIjq7S3XU247+UhpRSlGgVSzJoFkdAuZ4tuAI6bXV9lChoBmgJaA9DCLZq14S0xtK/lIaUUpRoFUsyaBZHQLmfsHzYmLN1fZQoaAZoCWgPQwgQzTy5psDkv5SGlFKUaBVLMmgWR0C5n5IJzDGcdX2UKGgGaAloD0MIur4PBwlR27+UhpRSlGgVSzJoFkdAuZ9zB68g6nV9lChoBmgJaA9DCEEMdO0L6Nm/lIaUUpRoFUsyaBZHQLmfU9srNGF1fZQoaAZoCWgPQwggRgiPNo7Xv5SGlFKUaBVLMmgWR0C5oOygCfYjdX2UKGgGaAloD0MID7qEQ29x5L+UhpRSlGgVSzJoFkdAuaDOPluFYnV9lChoBmgJaA9DCKa1aWyvBda/lIaUUpRoFUsyaBZHQLmgrx+8Xep1fZQoaAZoCWgPQwikqgmi7gPZv5SGlFKUaBVLMmgWR0C5oI/zjFQ3dX2UKGgGaAloD0MIQyCXOPJA37+UhpRSlGgVSzJoFkdAuaIXU4JeFHV9lChoBmgJaA9DCJiG4SNiSte/lIaUUpRoFUsyaBZHQLmh+PC2tuF1fZQoaAZoCWgPQwj9gt2wbVHUv5SGlFKUaBVLMmgWR0C5odnVG0/odX2UKGgGaAloD0MIPPceLjnu1b+UhpRSlGgVSzJoFkdAuaG6rlvIfnV9lChoBmgJaA9DCBjNyvYh7+S/lIaUUpRoFUsyaBZHQLmjSbONYKZ1fZQoaAZoCWgPQwjvqgfMQybhv5SGlFKUaBVLMmgWR0C5oytCVryldX2UKGgGaAloD0MI443MI3+w4b+UhpRSlGgVSzJoFkdAuaMMJfICEHV9lChoBmgJaA9DCIlEoWXdP+K/lIaUUpRoFUsyaBZHQLmi7OpsGgV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAA8D+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUZS4="}, "_n_updates": 249975, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7fbaa74d78b0>", "add": "<function DictReplayBuffer.add at 0x7fbaa74d7940>", "sample": "<function DictReplayBuffer.sample at 0x7fbaa74d79d0>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7fbaa74d7a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbaa74d5600>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -3.0, "ent_coef": "auto", "target_update_interval": 1, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -14.510865413583815, "std_reward": 3.176440984505635, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-23T07:09:18.679382"}
 
1
+ {"mean_reward": -0.28715825723484156, "std_reward": 0.07846220449736321, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-23T10:04:48.182031"}
sac-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:903318d8dfcf06af6c9a62ed19864bd245252246c4b85a664d01a8b86b3f75be
3
- size 3141234
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67b3391175a6a292dc9a3cb626c1b0a90eacd03ed0c6caeb36da078d22aa54af
3
+ size 3148738
sac-PandaReachDense-v2/actor.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b7ca0aa73e6fbb644dab6b7a21167217fb4a58f6cfe5ef48eef7e4d5f96f18da
3
  size 571805
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa3a49668b233f54ab8f6b76286df4ac38dbfb9c23727c32c3bc1c8e7e463bad
3
  size 571805
sac-PandaReachDense-v2/critic.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3159750b9f1fcee7f7e5bd56ff22ba3fddd78470e78beac71a0b668280760df5
3
  size 1132025
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36fb6de50256ab2d75213147892b01f7526bcf6666bab407f881caa2dc863bbb
3
  size 1132025
sac-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
  "__module__": "stable_baselines3.sac.policies",
6
  "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
- "__init__": "<function MultiInputPolicy.__init__ at 0x7f70fff769d0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7f70fff753c0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -22,7 +22,7 @@
22
  },
23
  "action_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAC2eJr3k8+mXV4kxdFIEtIAmDNaMsLzz/jQc/ACIojEStq/HdHRADwDC2kqTQPmI1rAOcMvgirMV1xHA/4Ji0u6l1nbvztbt2dGCvblP9FVQLO+yBkYZoC96rNx/2X6XRz+CXtq6aLHGnnenw8trQ55YGdO8SL52IdZl6L9rojryIeAhPzkTa/kvca2r/34gIM+9OTRxirijJh4rwftFU7t8/eeqEbHagSyZra+JU8rAUbHsKopgu0nqIp+nXSSSw2hko9euo52SanpofKPP09FiFDJywCq2xU0peteYAKglECW7gAZAIyUYy+1WMuwWmVyTarXcOQepT/yW+/Y6SSDUbpp+C3yl9rsJBDg0v3WnPgIRgeW/lxrXXEc+iuXc8hLT2thMWjsMIiDHyZCjxSnNbXewkhI96vTpRZPYD+gST6g3hJVO2uWdpQY6VpmwDRKbvRqsOzvR3Cv/bN4ary016gjetk4RVOb/VxPN29ULb/jFQ8AwuXHt/LK49LBUkeVALiEZkAXDVJt65ifcsU+0KKoEaIcZuArSMjgu+THzLCNvu/DVacX28K+2MHt/iUMcpJtRpmGUnnNDw9Vzdie/dpEke/XMv8mM6zD+E83ecupgt5Dit++bnO1Gj7/idqpy87HVYzO73gGt3hsbUFqueHmIllR3q3OEgUEqJ0cz/t4y6IYf8SCuWp3bssU6m0grW3NALsSctOwrlWv+wNrXMN6zfk+rk3wjdIeAEM5r6AcuL00FdQU3O688do3OKLt6iS8O3lhrWfWo0g6mGMLsmQwAhjz6DkppFgATqsy+H9u7lvw57GiRO8D3S3ZsAg0kQLTqR1Hur0o9f7pKzLUi/3VDam1G/WP+qYrDRQ2PVBSHnXbPzj34HZLINkX47JcOM6SfeaAxdyno0EP6ZVnqYiP9oQ53GRBgeT6T3EdgMbEeDzLrNeSon4BEHCopkS83NjwOdH05kDx9JI6IkAnzmZbWyP0ugMXY2Jp5u5z18iAGdSYwulXz8FxeR5QAimFwhu0OXJIMGxczAjTT/0JO56VSo6BXi6cVWvLuR7v1Ms34OvZVN2y0f+INwnWE88+DLbRP+x9AopOesBzNLzPIP7hTPvp8VH5tVvLagMMeNRdjyal68VcE+ObkS5AF3cHRVBbt8J+vbJAlvSqgtLAkeeGARPXUzaKLZiHRjMwO9xwURoBTceF9CxIxGrZfsotlS5kSoC551HxYj+ZMDy6DGZGsJBQsGTdBiaky4U1dOp6ebrZ7sxdVx8f661Tfa2ONHhzrOwlwYlepUkJ5fa4xFwP822WD8plKMMPL9JLoA8PI6PCZFu0imdavA0D7MNTMye/1vlnLCWY5plZQNAYJvXuv3EHvDSyF5cQVNO/By+gkw83lvgTlW0Vgdv46cT+vkTomT7i/e72MFXfjZ70gPnWR170HVbAMn+6vpDFw4EKI+kJBEu+75MsWDs+5PzFzQeFSaGNs0i2Otjtll6QD5i+fjZMkr5H2TCpGOW8PhP5/IH5eO86YLvT9D2GLxTdv7Ekz1Oiux3BDEPFcGPVEErfgf7lHTkyn7G8koObPsZvPMy5yNlgw19PbeuEenDFqdg+zWKCyJ4yEkdTvaJthEglpA30DZD6Nx9q1OiMZfKJdZu8iMolXIaFpVKppnor7Pvg+TA1g8q4ZX+629Ug1tqYPykUIUXylCIJYvi87s/KnXwHyYd3MGZFFsj26PBD4I+aSF73HP639dOkbKXJISNFte2jTBKKKjDAK2Cyb3somTxCgFbT8aXuxDUxiLKJa00H/P2LAV4Qofgmmr0RdYmXDf+OPeEapW/6oWKvuIt5PEzeu/fR6hj/AFTYhYx4PBz93iVn4SkwUfU2+1duhoz2E3mb5mn+lHEYuDWa19daV8QAFcOktz/qtIrPk+v2C9z4F+MkKzufvX17hZVXOBE55wajQiBauNINxKaKuyn1ktbrYCsFYwMKChqRh9Suxeyvn0TM7qgwETj3SD5/6rPrud/1bYc6wgGrKXb6vDC+v7Gs0STEocQNzdZLkStzGkuOwsz1zIGE7aMP39Ges98swaA6md0Xz1+eelc14HM5aUwfynEbw1X6HIQM9QtxX3MXs0WlQkYu3+myrJnLFKj5QET2ZL2NrOvyjLP3aWEiwPgV6rW/zAC4eTi7CHbCKLlo/UkG5ioLhiIbxBhl1UVw7p4X4ZblwJpjaQ/T6x0r2tVZx9jX80i2GHf95H/Av6T4/LU6VEl0AR+xSegPF9PZfANt4dqyOn8QpQhtLJHX4q/t2u1D4sOSr2A6CfcLBn+GLLMdza/P9zHinKcgMRP+ipoRijIH8mTIZ7IHGkWitmmNyLdKJq751qsG0sLciod8H1kXvaC9Wmd4Iu8KwNTYmzpLbD2elk89H4nvOd5ZdLGsWcKooOz5V72AC63e02C7qwWuHIk11CZAVLzVH8bM3pjJL1ngV9J1I/KGxaiuxSMIEl/rGMLUG/zFFADxoSD/OiFdZXT1ZrVhUU2iLyzfFE4OTKfaZWlfvwR9CIDA0VvBW3F91USA8hc83jA+HkiJGsJIDMD+T47enq+oEmm+2WMIcXmQ/5brYMJT3OckqiMKZPXMofeR1d0jgebxEV0bIBx4987LubdtEcc8TjplQkitQkJla44LsOKmZZaI1v4t5ua0SU8uaSdny1YoyMM4e6bhVxD3v/VpYSv4nGnz4JRdXQpOZHR65JFFOOFYle+kS29eDZo7QZr99YLyRH1MI1iCDWma5MhcuZrkDPtHcGVJvmDOoa5cywRiCHt6PSESReimYeKgXpmQice9ohSaq0cV+2WDgxX1Y4VsYUdf6PlIz0Buj4apQB6OI/gr0oMqIvutJGXNbG5NSonywbThtY9YICzH4GubbDfCKQsQI3JzGvXfVAHIHziodHkXYVfMqmj2Gh8ox8I8xYC4Gzn2dey3UX0Cb/vlmRlIaJU6r0Pqq/V0kiCm087NxMwlm/STYGTPOdcMaJLmAGpJUAl15GXw4uC1QEDfRNOYGzuV1I5IaDb/ykfcNAx3G9R/1Nka/rIf5L78g0xQNmF8/mFTeMDBilWI5SH8EVMugzVeOd/+knd5HYzilpxYc72Hj88KAzHQc2tmW7Q/EuFbs9WTwivNLdgds2AFT2f1dBPhV9anlwwYUQcyOliSiiKp0Su4ENvzJ1u1V/YnQriSWdKb+qGb+tQlMuHqiaGlpDuN8J9+qej82jSrqiiCwTp448GrHxb2yd6MnQUh9LTwaHXaX+3RFytRP/anaD1P7UECQXJpw2Kd9rQSaWjkxUzZpea14m+SnUDzYSpjvmyUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNWAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
26
  "dtype": "float32",
27
  "_shape": [
28
  3
@@ -34,12 +34,12 @@
34
  "_np_random": "RandomState(MT19937)"
35
  },
36
  "n_envs": 4,
37
- "num_timesteps": 1000,
38
- "_total_timesteps": 1000,
39
  "_num_timesteps_at_start": 0,
40
  "seed": null,
41
  "action_noise": null,
42
- "start_time": 1677136074675499674,
43
  "learning_rate": 0.0003,
44
  "tensorboard_log": null,
45
  "lr_schedule": {
@@ -48,10 +48,10 @@
48
  },
49
  "_last_obs": {
50
  ":type:": "<class 'collections.OrderedDict'>",
51
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAoUIYP3p9qD3jVgJAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALxkoQNNf3j4CNZE/WaUbPx7X3r5VYcK+zAkQQC/dTL+8f38+QgazvoBZdz8dSDq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAChQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2hQhg/en2oPeNWAkAwdQY+ERsaPBi67T2UaA5LBEsGhpRoEnSUUpR1Lg==",
52
- "achieved_goal": "[[0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]\n [0.5947667 0.08227058 2.0365531 ]]",
53
- "desired_goal": "[[ 2.626537 0.43432483 1.1344302 ]\n [ 0.60799176 -0.43523496 -0.37964883]\n [ 2.250598 -0.80025 0.2495107 ]\n [-0.34965712 0.9662094 -0.72766286]]",
54
- "observation": "[[0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]\n [0.5947667 0.08227058 2.0365531 0.13130641 0.00940587 0.1160776 ]]"
55
  },
56
  "_last_episode_starts": {
57
  ":type:": "<class 'numpy.ndarray'>",
@@ -59,24 +59,24 @@
59
  },
60
  "_last_original_obs": {
61
  ":type:": "<class 'collections.OrderedDict'>",
62
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAocUQPg2Agj2o4X8+XiKYPFYEGrxKNwk+uLPyPS06JL2zhjo+I5QivXAZ3j2G4ds9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
63
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
64
- "desired_goal": "[[ 0.1413789 0.0637208 0.24988425]\n [ 0.01857108 -0.00940045 0.13399997]\n [ 0.11850685 -0.04009454 0.18215446]\n [-0.03969206 0.10844696 0.10736375]]",
65
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
66
  },
67
- "_episode_num": 20,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
  "_current_progress_remaining": 0.0,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISYCaWrYWLsCUhpRSlIwBbJRLMowBdJRHQCJRCMPz4Dd1fZQoaAZoCWgPQwjekEYFToYowJSGlFKUaBVLMmgWR0AiFCMxXXAedX2UKGgGaAloD0MIxy5RvTVoJsCUhpRSlGgVSzJoFkdAIdsMiKR+0HV9lChoBmgJaA9DCPbsuUxNQiTAlIaUUpRoFUsyaBZHQCGfUe+23KB1fZQoaAZoCWgPQwh00ZDxKOUcwJSGlFKUaBVLMmgWR0AmBHzYmLLqdX2UKGgGaAloD0MI/irAd5tnHsCUhpRSlGgVSzJoFkdAJcbkwN9YwXV9lChoBmgJaA9DCJW2uMZnZjDAlIaUUpRoFUsyaBZHQCWLeIl+mWN1fZQoaAZoCWgPQwhKQiJt4wcnwJSGlFKUaBVLMmgWR0AlTW+XZ5AydX2UKGgGaAloD0MIkfP+P06IF8CUhpRSlGgVSzJoFkdAKE60IC2c8XV9lChoBmgJaA9DCFlPrb66+h/AlIaUUpRoFUsyaBZHQCgQ9RrJr+J1fZQoaAZoCWgPQwhlw5rKoigswJSGlFKUaBVLMmgWR0An1TBInSfEdX2UKGgGaAloD0MINdQoJJkdI8CUhpRSlGgVSzJoFkdAJ5ddmg8KX3V9lChoBmgJaA9DCN7oYz4giCTAlIaUUpRoFUsyaBZHQCqU052hZhd1fZQoaAZoCWgPQwhszOuIQ8YqwJSGlFKUaBVLMmgWR0AqV0SRKYiQdX2UKGgGaAloD0MI61VkdEDKI8CUhpRSlGgVSzJoFkdAKhycbzbvgHV9lChoBmgJaA9DCLhX5q26divAlIaUUpRoFUsyaBZHQCnfUx20Re11fZQoaAZoCWgPQwiwjuOHSlsswJSGlFKUaBVLMmgWR0As2FqzqrzYdX2UKGgGaAloD0MIQgjIl1ChKcCUhpRSlGgVSzJoFkdALJqLKmsNlXV9lChoBmgJaA9DCEJ79fHQZyXAlIaUUpRoFUsyaBZHQCxenIhhYvF1fZQoaAZoCWgPQwj4wfnUsbImwJSGlFKUaBVLMmgWR0AsIKpDNQj2dWUu"
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
- ":serialized:": "gAWV0wIAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUZS4="
78
  },
79
- "_n_updates": 225,
80
  "buffer_size": 1000000,
81
  "batch_size": 256,
82
  "learning_starts": 100,
@@ -89,12 +89,12 @@
89
  ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
90
  "__module__": "stable_baselines3.common.buffers",
91
  "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
92
- "__init__": "<function DictReplayBuffer.__init__ at 0x7f70fffbf4c0>",
93
- "add": "<function DictReplayBuffer.add at 0x7f70fffbf550>",
94
- "sample": "<function DictReplayBuffer.sample at 0x7f70fffbf5e0>",
95
- "_get_samples": "<function DictReplayBuffer._get_samples at 0x7f70fffbf670>",
96
  "__abstractmethods__": "frozenset()",
97
- "_abc_impl": "<_abc_data object at 0x7f70fffb5c60>"
98
  },
99
  "replay_buffer_kwargs": {},
100
  "train_freq": {
 
4
  ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
  "__module__": "stable_baselines3.sac.policies",
6
  "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x7fbaa748cdc0>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fbaa7485d50>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
22
  },
23
  "action_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAB88xtSe2DteaIYtuCdvfDVQxLoKCvduNublE7TDhsRnpTlnCSAdV3Ru7UkmjWGi8Dt5b6S1/+4eqXR+zRWtA/nJRd9B8xInttH7mpvpGlDrYc0kYJoYdkiIaF67WKf46apduujfOw9YHUQ/7advq2eT8QlUyY0vO1DBB9YV261656pfqNZHCAsySwnrRqmh4m/IwxZHzjRzRUf0wxAaiqcuui7EE+5DL8yM2eA1fDRWidMmo+wnlP2LtomKfLs91GB+n3XIJA+ovn1DL/17klcv0/Qet8haDP6um3ClPYJtUhnQh3vSFMT4yM7wxl1gjJ6FOmL0vqwRHA5EyVce6j5dp8oKhi0jsxruhyBcEwrqFa1ABzJrGWjkSLoEeSLmGWDOxKjnq1kBv5xuJWZDTwzSZ1EVW2iJ450prKG+5oknbxnsjJ0dktdKjSRaFPqyVGi8mSE6FrCC+ad2da/rQB4wLF6ITOfmfOhvymI8hlLg2iDPHLuXg31LmWBby578StRD0JX4MuFjhwv/8g8YKzXqL2HmzFmTy5HGJ3EbrJFnQgVnTOG4IeckqI3S9Z2x09Zd2q7uxMiTHeEXFqGjrjPruWKiN8OQVbRFMxDWw7/u4WAinQgt50nFbkbKH2CXDhQq/YnzbteZWYos1zJBygMHXIukUvdJngVbKv7JejM6l0sCtpfQjklay2soT7QKSKDCJAl8qwXaeNB+t8D3eCQ+w5dIH9w/llIK2Aqu+4kCHHRD7uaDAd3EcxeE/91YBWEYqtWAc5hsHAzpHm1XWNxFOIuHlqTrTe5tY/qWcsAC6JYbTpAJtjl6xYxOr6jQ7htYm6dFhzBIi9908/TOqxCLHg3QJs4GE9LqN/ADLvtMLVDsGV/m2LI/F2TPzW3M2LLhS4IzY0kSzp4Si6VFEGS9PdVbYb3mkP2CVyXaBvCoUJs/+loMEMdLuazmkkedu6d6/Go/GiN6uyBovUoXxVJSfhgLNdf156JZlTYjXjK1sThmwQ2Rs+sVTwBgb+xJ9ehDaLa9bmZH5uKSgzSKnJsiFxTtcLInR8NgOleCm2vZjt3dLxWDkENszj7/KLCQg8/WIn1Mh52L1QtIOLbP8Uk7s3TlsaGi6RA5ReLcN5evs1lA8bQMDwOnWVpH6IsJY10YolzYT7M1EEDbpCBqrOfaNLy9EDRsKGojcUlpc7JhK6V9gznYAFrkAIxO71Khi0GcLsRmMYO2lkVC3yMOrt+qLtG4zb8VanFG8csgppnngffdQtxOE/k7aCc1BqadeoYWS5yGCfy58raDsvnqM9ALMX2HAOeVryQUJTnEVGWW4wc4aSlIXjs07EbLUP/gH2YQikAeRTtloCH2MANjBzCSCFUg9PhUTvqw/yf3ize1roZa/SMge2rBY1c0onTelN+FMuiiam/bTmyAxmSgKJw/QHZwj90sSLjbZmaaPCFdsd5NdHyXzsAH9K9R6RwlGn82ykJra0IIcbievGG42vDU+1ucxAw5x8TwiFuJiDcclq0TVwFIcQXgaL4m2ifd8cbATTlBs9+IsXyvUOHKQ/AM0OjOosFZl/IN3CjPqrHElutA99Yg2AuLQX8qlJLDBxbe8yBFL9oxqqJLENSDsZg2jEXZUkTHjgSnlDwA73iAvya4naFObB59q32PAM1Azr2CiiW/0BXO3dvuG804ccqBkMRuRpZQZGSl1dm5jrZo/FRGbw1gbt0QrtzAl8TbmazZoKSxEocHqSgixr9se3mf6PG/ALJevyR6+70QCR53GnqS9asChtGh63z1hxrYoPxODlXNvRvbJbJWtUYeaLHEqkbwNNq5aCI2qdYV2LX/CompkDRkryG8gTKOXxywoaoMAi5DGka/CAxuElUFkarFp5vlKjxTOndcSUpQ2Rd9fXIeoFujxE2enYLlQoCMRZkb8sZyOrtn9DJUtwyq5Uge0Op+dTAERPHpWkn7DZqaNfSd1EQqC7XUgIjlcKR3nAIxGBuOC6DuD6O1rC45goY3aMhjnbtm5rBryMsp7vaqNxI39T1WJV/fNd3qO9VaNYTX6Ut3s5hiJzWC/4jcsJ63Ulyo6YiRUhEnI0MqbJ0WqrQwUGXiFCZryGBcBSNUr8p+9eLc4I9/A7p1Wo83o3+mDpvumv+4ubuPmwpnZHaoaOtq7X4mJO+qGcL3HrNnxxJdBZWB8uLWnjOjDKG9KTswZV6mJ5N+nB+B70mvmREbK3WZVX++UZFDiByxB+xiL3xX1stqd2C9N5iY5bwGV+DZQPAFiAjsyY0jtb67ZuUzD2F3HE836pfenoSBl1lFbYLkFAlWyHiWMtyGQQuvS4hbbuqIXsYXhkDJTU76USHoH7YzKgENz3e250CmrKDKelqdgXZwQgs6/Is5ffjneXjfrycBS6K+Ll5Mz5nPUJCPMuLcQasu5MrNGd31U+GQoCAPLpe11Vk3CbfgJJpU2sMnGo24WF3gE6uUTWGgH8GONXiTwFYL9KWzHQfaDM9hXd0/gTR2Pahfe7ighLKMcefAIEgT/6Slaqr8u3xVADE4AxZv+u8uhNU9su+12+k/q6n/iroQM87PT5putQcd1Mf6LSWQE5Lm4WvOHNBaY1Mwn3Swm9XutnWYkeVOYi3XB/C3/h5CbYGWQsiaQqXRz5rKGmnJtmGxoAmfDdlVnY3CFvNDZe+pw8TbU1qvU/9XPRI3Gad940m0drV8A7Ai3K74F1w7YqJMhQpjvQPgqHESoPyC+8r6F9A2n0wBwNPj1yOOgw6fu2s2jZgA0vrgu/w27PClJnqC0sJWv1SDUusMPC9kIeIZ2fNfTFePRLk3oGit08me8ZumFflbUCoAJERHSNVwg2b+cM1ngS/0l9yOAthfbAKlce6HN5QyxiJoPOeTnirhdSaCkJsHOkwoZ8tw7P3BcB1w0Oop2u2xydSRCh9FYh2GozthQA8XzRmANV8hyXu1q6JUjCKMFbkIERy+bSw279dBPEh78buY60J/6vand4dO0CkUbMYeusE8mlkmBgbCogj8CktcZjxURYtTfz3M3YFLYIfeoH7aAIOJmlqRVjt1t2JCl8j1yLHVaQfLdj+axMBeX7VlD2QpFTGtq6lc3wahLmESM2V1LykaWfw6yP3fJfoaT2B6qK11+GjvSLkai6z094xHBLv0Uk6KTQJGhIislCEgE0XOLGSWO6Z8l7Kr8bbFTwrf2cJVfPpr15sEZ6nQ5PGwPL8iIx4nILi1i3CwNRRvYp7h4G5ZxK2IsQ7wrGYhzH8NEHBpJ0xMPhu5VTKMGQISzwVgUY50r1g0KDIGWsANExFkRbb4hgr1zArZn13FePqj5cC2uKUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNWAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
26
  "dtype": "float32",
27
  "_shape": [
28
  3
 
34
  "_np_random": "RandomState(MT19937)"
35
  },
36
  "n_envs": 4,
37
+ "num_timesteps": 1000000,
38
+ "_total_timesteps": 1000000,
39
  "_num_timesteps_at_start": 0,
40
  "seed": null,
41
  "action_noise": null,
42
+ "start_time": 1677140126548072950,
43
  "learning_rate": 0.0003,
44
  "tensorboard_log": null,
45
  "lr_schedule": {
 
48
  },
49
  "_last_obs": {
50
  ":type:": "<class 'collections.OrderedDict'>",
51
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAI3TaPtN0Pzx1Uww/I3TaPtN0Pzx1Uww/I3TaPtN0Pzx1Uww/I3TaPtN0Pzx1Uww/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAT4Wnv7y/Vb6Ux9A/ld8RvVK2Wz+Nlog/ocTRv0z3qD/lUNE/enCxP3D8n79FoZk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAjdNo+03Q/PHVTDD9YJaI9Ci/sOgy5g7ojdNo+03Q/PHVTDD9YJaI9Ci/sOgy5g7ojdNo+03Q/PHVTDD9YJaI9Ci/sOgy5g7ojdNo+03Q/PHVTDD9YJaI9Ci/sOgy5g7qUaA5LBEsGhpRoEnSUUpR1Lg==",
52
+ "achieved_goal": "[[0.4266673 0.01168557 0.54814845]\n [0.4266673 0.01168557 0.54814845]\n [0.4266673 0.01168557 0.54814845]\n [0.4266673 0.01168557 0.54814845]]",
53
+ "desired_goal": "[[-1.3087558 -0.20873922 1.6310906 ]\n [-0.03561362 0.85825074 1.0670944 ]\n [-1.6388131 1.3200469 1.6352812 ]\n [ 1.386245 -1.2498913 1.200234 ]]",
54
+ "observation": "[[ 0.4266673 0.01168557 0.54814845 0.07917279 0.00180194 -0.00100497]\n [ 0.4266673 0.01168557 0.54814845 0.07917279 0.00180194 -0.00100497]\n [ 0.4266673 0.01168557 0.54814845 0.07917279 0.00180194 -0.00100497]\n [ 0.4266673 0.01168557 0.54814845 0.07917279 0.00180194 -0.00100497]]"
55
  },
56
  "_last_episode_starts": {
57
  ":type:": "<class 'numpy.ndarray'>",
 
59
  },
60
  "_last_original_obs": {
61
  ":type:": "<class 'collections.OrderedDict'>",
62
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGs7lvfhdm7ztyJQ+mwUYu1xwlj0aiXc+JhMQvi9c6D2D+JQ+qpf2PfSJ371mrIE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
63
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
64
+ "desired_goal": "[[-0.11220951 -0.01896571 0.29059544]\n [-0.00231967 0.0734565 0.24173394]\n [-0.14069805 0.11345708 0.2909585 ]\n [ 0.12040646 -0.10914984 0.25326842]]",
65
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
66
  },
67
+ "_episode_num": 20000,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
  "_current_progress_remaining": 0.0,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFD5bBwd73b+UhpRSlIwBbJRLMowBdJRHQLmDA48EFGJ1fZQoaAZoCWgPQwji578Hr13Yv5SGlFKUaBVLMmgWR0C5guUadc0MdX2UKGgGaAloD0MIehnFcksr5L+UhpRSlGgVSzJoFkdAuYLF+/gzg3V9lChoBmgJaA9DCDy+vWvQF+W/lIaUUpRoFUsyaBZHQLmCpyOaOPx1fZQoaAZoCWgPQwjG+ZtQiIDiv5SGlFKUaBVLMmgWR0C5hCp0CA+ZdX2UKGgGaAloD0MIO3MPCd/73r+UhpRSlGgVSzJoFkdAuYQL+AEt/XV9lChoBmgJaA9DCJW5+UZ0z9u/lIaUUpRoFUsyaBZHQLmD7OGj9GZ1fZQoaAZoCWgPQwjvjSEAOPbev5SGlFKUaBVLMmgWR0C5g8221D0EdX2UKGgGaAloD0MI626e6pCb4L+UhpRSlGgVSzJoFkdAuYVO4oZydXV9lChoBmgJaA9DCN51NuSfGd6/lIaUUpRoFUsyaBZHQLmFMH0K7Zp1fZQoaAZoCWgPQwg7jh8qjZjVv5SGlFKUaBVLMmgWR0C5hRFb3XZodX2UKGgGaAloD0MIyhtg5jv427+UhpRSlGgVSzJoFkdAuYTyKjzqbHV9lChoBmgJaA9DCOFh2jf31+K/lIaUUpRoFUsyaBZHQLmGeayKNyZ1fZQoaAZoCWgPQwi7JTlgV5Pdv5SGlFKUaBVLMmgWR0C5hltLlFMJdX2UKGgGaAloD0MIQfM5d7te3L+UhpRSlGgVSzJoFkdAuYY8PpY9xXV9lChoBmgJaA9DCDkn9tA+VtO/lIaUUpRoFUsyaBZHQLmGHR4hUzd1fZQoaAZoCWgPQwgrweJw5tfhv5SGlFKUaBVLMmgWR0C5h6XF1jiGdX2UKGgGaAloD0MIB++rcqFy4L+UhpRSlGgVSzJoFkdAuYeHUQTVUnV9lChoBmgJaA9DCGTmApfHmti/lIaUUpRoFUsyaBZHQLmHaDR+jM51fZQoaAZoCWgPQwhJTbuYZrrYv5SGlFKUaBVLMmgWR0C5h0kDIRywdX2UKGgGaAloD0MIJ9pVSPlJ4r+UhpRSlGgVSzJoFkdAuYjNTyauwHV9lChoBmgJaA9DCKnZA63AkNC/lIaUUpRoFUsyaBZHQLmIryc0+C91fZQoaAZoCWgPQwhNo8nFGFjUv5SGlFKUaBVLMmgWR0C5iJCPyTY/dX2UKGgGaAloD0MIejTVk/lH27+UhpRSlGgVSzJoFkdAuYhx5eJHiHV9lChoBmgJaA9DCJRrCmR2FuC/lIaUUpRoFUsyaBZHQLmKaK0lZ5l1fZQoaAZoCWgPQwi8z/HR4ozqv5SGlFKUaBVLMmgWR0C5ikqhHskZdX2UKGgGaAloD0MIOwDirl5F2r+UhpRSlGgVSzJoFkdAuYor58BuGnV9lChoBmgJaA9DCAuz0M5pFtO/lIaUUpRoFUsyaBZHQLmKDR15jYt1fZQoaAZoCWgPQwjV6NUApSHiv5SGlFKUaBVLMmgWR0C5jDcKkVN6dX2UKGgGaAloD0MIoUj3cwry4r+UhpRSlGgVSzJoFkdAuYwZLOAy23V9lChoBmgJaA9DCIkLQKN06eK/lIaUUpRoFUsyaBZHQLmL+qIrOJN1fZQoaAZoCWgPQwiefeVBegrhv5SGlFKUaBVLMmgWR0C5i9wTAWSEdX2UKGgGaAloD0MIlYJuL2kM5L+UhpRSlGgVSzJoFkdAuY4SeCkGinV9lChoBmgJaA9DCAsMWd3qOd2/lIaUUpRoFUsyaBZHQLmN9IJZ4fR1fZQoaAZoCWgPQwgPJsXHJ2Tfv5SGlFKUaBVLMmgWR0C5jdXo5ggHdX2UKGgGaAloD0MINWH7yRgf0r+UhpRSlGgVSzJoFkdAuY23H3lCC3V9lChoBmgJaA9DCJuvko/dBeK/lIaUUpRoFUsyaBZHQLmPgjvuw5h1fZQoaAZoCWgPQwhUc7nBUIfXv5SGlFKUaBVLMmgWR0C5j2PATIvKdX2UKGgGaAloD0MIa2XCL/Xz3b+UhpRSlGgVSzJoFkdAuY9EpPRAr3V9lChoBmgJaA9DCAPPvYdLjtm/lIaUUpRoFUsyaBZHQLmPJXNTtLN1fZQoaAZoCWgPQwhE3JxKBoDev5SGlFKUaBVLMmgWR0C5kLwT/Q0GdX2UKGgGaAloD0MI+z+H+fIC37+UhpRSlGgVSzJoFkdAuZCdn7Hhj3V9lChoBmgJaA9DCBjqsMItH9m/lIaUUpRoFUsyaBZHQLmQfoBJZnt1fZQoaAZoCWgPQwgm4NdIEgTkv5SGlFKUaBVLMmgWR0C5kF+9FnZkdX2UKGgGaAloD0MIkKSkh6HV37+UhpRSlGgVSzJoFkdAuZHmQSzw+nV9lChoBmgJaA9DCCZzLO+qh+G/lIaUUpRoFUsyaBZHQLmRx+otL+R1fZQoaAZoCWgPQwjqBgq8k0/jv5SGlFKUaBVLMmgWR0C5kajQqqffdX2UKGgGaAloD0MItydIbHcP2r+UhpRSlGgVSzJoFkdAuZGJnxri2nV9lChoBmgJaA9DCNwr81Zdh+S/lIaUUpRoFUsyaBZHQLmTJVjI7vJ1fZQoaAZoCWgPQwjj/bj98snjv5SGlFKUaBVLMmgWR0C5kwcv24/edX2UKGgGaAloD0MInMO12sNe5b+UhpRSlGgVSzJoFkdAuZLoXO4XoHV9lChoBmgJaA9DCO9yEd+JWdi/lIaUUpRoFUsyaBZHQLmSySsr/bV1fZQoaAZoCWgPQwis5c5MMJzhv5SGlFKUaBVLMmgWR0C5lGKuSwGGdX2UKGgGaAloD0MInYNnQpPE27+UhpRSlGgVSzJoFkdAuZREP07KaHV9lChoBmgJaA9DCJiIt86/Xd6/lIaUUpRoFUsyaBZHQLmUJS0BwMp1fZQoaAZoCWgPQwie0sH6P4fnv5SGlFKUaBVLMmgWR0C5lAZy2hIwdX2UKGgGaAloD0MIC0eQSrGj1b+UhpRSlGgVSzJoFkdAuZWMiQkonnV9lChoBmgJaA9DCH5WmSmtv9+/lIaUUpRoFUsyaBZHQLmVbh4t6HF1fZQoaAZoCWgPQwiEDOTZ5Vvdv5SGlFKUaBVLMmgWR0C5lU8TSLIgdX2UKGgGaAloD0MIi/7QzJNr1L+UhpRSlGgVSzJoFkdAuZUv5P/JeXV9lChoBmgJaA9DCARyiSMPxOG/lIaUUpRoFUsyaBZHQLmWxIZIg/11fZQoaAZoCWgPQwgg8MAAwofjv5SGlFKUaBVLMmgWR0C5lqYsqaw2dX2UKGgGaAloD0MIYVPnUfH/5b+UhpRSlGgVSzJoFkdAuZaHXL/0d3V9lChoBmgJaA9DCOkrSDMWTdK/lIaUUpRoFUsyaBZHQLmWaCfYjB51fZQoaAZoCWgPQwikN9xHbk3Sv5SGlFKUaBVLMmgWR0C5l+3iNsFddX2UKGgGaAloD0MIT8x6MZQT1L+UhpRSlGgVSzJoFkdAuZfPbh3qzXV9lChoBmgJaA9DCBbbpKKxduS/lIaUUpRoFUsyaBZHQLmXsFX7tRh1fZQoaAZoCWgPQwh0YaQXtfvev5SGlFKUaBVLMmgWR0C5l5Ex7AtWdX2UKGgGaAloD0MIxccnZOdt4L+UhpRSlGgVSzJoFkdAuZlF6Ww/xHV9lChoBmgJaA9DCDGXVG03wdy/lIaUUpRoFUsyaBZHQLmZJ8274BV1fZQoaAZoCWgPQwjvVpboLLPXv5SGlFKUaBVLMmgWR0C5mQmrKeTWdX2UKGgGaAloD0MI2gBsQIS44r+UhpRSlGgVSzJoFkdAuZjq9+PRzHV9lChoBmgJaA9DCOV9HM2Rlde/lIaUUpRoFUsyaBZHQLma+pmVZ9x1fZQoaAZoCWgPQwhiFASPb+/Xv5SGlFKUaBVLMmgWR0C5mtyfYjB3dX2UKGgGaAloD0MIaahRSDKr2r+UhpRSlGgVSzJoFkdAuZq97dBSk3V9lChoBmgJaA9DCH0fDhKifNq/lIaUUpRoFUsyaBZHQLmanzDn/1h1fZQoaAZoCWgPQwgEO/4LBAHev5SGlFKUaBVLMmgWR0C5nM4Ju2qldX2UKGgGaAloD0MI5UUm4NfI4r+UhpRSlGgVSzJoFkdAuZywE2YOUnV9lChoBmgJaA9DCOkLIef9f9i/lIaUUpRoFUsyaBZHQLmckZfD1oR1fZQoaAZoCWgPQwg/G7luSnnWv5SGlFKUaBVLMmgWR0C5nHLzwtrcdX2UKGgGaAloD0MIVkRN9Pko3L+UhpRSlGgVSzJoFkdAuZ6KYplSTHV9lChoBmgJaA9DCOLMr+YAQeK/lIaUUpRoFUsyaBZHQLmea/fwZwZ1fZQoaAZoCWgPQwiqukc2V83Uv5SGlFKUaBVLMmgWR0C5nkziS7oTdX2UKGgGaAloD0MIjq7S3XU247+UhpRSlGgVSzJoFkdAuZ4tuAI6bXV9lChoBmgJaA9DCLZq14S0xtK/lIaUUpRoFUsyaBZHQLmfsHzYmLN1fZQoaAZoCWgPQwgQzTy5psDkv5SGlFKUaBVLMmgWR0C5n5IJzDGcdX2UKGgGaAloD0MIur4PBwlR27+UhpRSlGgVSzJoFkdAuZ9zB68g6nV9lChoBmgJaA9DCEEMdO0L6Nm/lIaUUpRoFUsyaBZHQLmfU9srNGF1fZQoaAZoCWgPQwggRgiPNo7Xv5SGlFKUaBVLMmgWR0C5oOygCfYjdX2UKGgGaAloD0MID7qEQ29x5L+UhpRSlGgVSzJoFkdAuaDOPluFYnV9lChoBmgJaA9DCKa1aWyvBda/lIaUUpRoFUsyaBZHQLmgrx+8Xep1fZQoaAZoCWgPQwikqgmi7gPZv5SGlFKUaBVLMmgWR0C5oI/zjFQ3dX2UKGgGaAloD0MIQyCXOPJA37+UhpRSlGgVSzJoFkdAuaIXU4JeFHV9lChoBmgJaA9DCJiG4SNiSte/lIaUUpRoFUsyaBZHQLmh+PC2tuF1fZQoaAZoCWgPQwj9gt2wbVHUv5SGlFKUaBVLMmgWR0C5odnVG0/odX2UKGgGaAloD0MIPPceLjnu1b+UhpRSlGgVSzJoFkdAuaG6rlvIfnV9lChoBmgJaA9DCBjNyvYh7+S/lIaUUpRoFUsyaBZHQLmjSbONYKZ1fZQoaAZoCWgPQwjvqgfMQybhv5SGlFKUaBVLMmgWR0C5oytCVryldX2UKGgGaAloD0MI443MI3+w4b+UhpRSlGgVSzJoFkdAuaMMJfICEHV9lChoBmgJaA9DCIlEoWXdP+K/lIaUUpRoFUsyaBZHQLmi7OpsGgV1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAA8D+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUZS4="
78
  },
79
+ "_n_updates": 249975,
80
  "buffer_size": 1000000,
81
  "batch_size": 256,
82
  "learning_starts": 100,
 
89
  ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
90
  "__module__": "stable_baselines3.common.buffers",
91
  "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
92
+ "__init__": "<function DictReplayBuffer.__init__ at 0x7fbaa74d78b0>",
93
+ "add": "<function DictReplayBuffer.add at 0x7fbaa74d7940>",
94
+ "sample": "<function DictReplayBuffer.sample at 0x7fbaa74d79d0>",
95
+ "_get_samples": "<function DictReplayBuffer._get_samples at 0x7fbaa74d7a60>",
96
  "__abstractmethods__": "frozenset()",
97
+ "_abc_impl": "<_abc_data object at 0x7fbaa74d5600>"
98
  },
99
  "replay_buffer_kwargs": {},
100
  "train_freq": {
sac-PandaReachDense-v2/ent_coef_optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9598d19672307022f2b76c8f5480be0325d2d993b6d5b3b28558784cb024c379
3
  size 1507
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdb281ff09ac10c49a2239b9ea3e8a3fe326cac3abf9686df54c8d1f7d1e6d0f
3
  size 1507
sac-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5ff00b0c781ead9512d3544eed8f32fdbf5596411428e76b36776c371f248f7a
3
  size 1416645
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f27f81c342beb33d316702967861e25a236bc644c7742d1a2efeb3e513110b4
3
  size 1416645
sac-PandaReachDense-v2/pytorch_variables.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c2446d61f65e0f7fd13ae5ddbe88ccfb70cf0dff9c1108abf6959d9c8a82f507
3
  size 747
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69505a58f36329a7bd9b00bdd16e9147e12113c859441ce67e27992852e23315
3
  size 747
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:24f98b55c8a1b55c2fd39359cd920bc8fff2dbd6ea7e442722507d573cf88f65
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49ddc1269fca6cf8f8267221df42f0688077d84fbf7a91992d91cd60fccd145e
3
  size 3056