SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'I am not good at expressing my true feelings by the way I talk and look.',
'Felt nervous or anxious?',
'Experienced sleep disturbances?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.568 |
spearman_cosine | 0.5533 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,351 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 16.73 tokens
- max: 47 tokens
- min: 5 tokens
- mean: 14.82 tokens
- max: 28 tokens
- min: 0.0
- mean: 0.26
- max: 1.0
- Samples:
sentence1 sentence2 score Do you believe in telepathy (mind-reading)?
I believe that there are secret signs in the world if you just know how to look for them.
0.15
Irritable behavior, angry outbursts, or acting aggressively?
Felt “on edge”?
0.62
I have some eccentric (odd) habits.
I often have difficulty following what someone is saying to me.
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.L1Loss" }
Evaluation Dataset
Unnamed Dataset
- Size: 236 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 236 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 16.4 tokens
- max: 47 tokens
- min: 5 tokens
- mean: 14.76 tokens
- max: 28 tokens
- min: 0.0
- mean: 0.29
- max: 1.0
- Samples:
sentence1 sentence2 score Feeling afraid as if something awful might happen?
I have trouble following conversations with others.
0.19
Do you believe in telepathy (mind-reading)?
Feeling jumpy or easily startled?
0.1
Other people see me as slightly eccentric (odd).
I have felt that there were messages for me in the way things were arranged, like furniture in a room.
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.L1Loss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
---|---|---|---|---|
0.0680 | 10 | 0.2239 | - | - |
0.1361 | 20 | 0.2188 | - | - |
0.2041 | 30 | 0.2007 | - | - |
0.2721 | 40 | 0.2045 | - | - |
0.3401 | 50 | 0.2179 | 0.2197 | - |
0.4082 | 60 | 0.2106 | - | - |
0.4762 | 70 | 0.2124 | - | - |
0.5442 | 80 | 0.2046 | - | - |
0.6122 | 90 | 0.2069 | - | - |
0.6803 | 100 | 0.1965 | 0.2112 | - |
0.7483 | 110 | 0.2355 | - | - |
0.8163 | 120 | 0.2012 | - | - |
0.8844 | 130 | 0.2402 | - | - |
0.9524 | 140 | 0.2173 | - | - |
1.0204 | 150 | 0.1763 | 0.2043 | - |
1.0884 | 160 | 0.1862 | - | - |
1.1565 | 170 | 0.1854 | - | - |
1.2245 | 180 | 0.193 | - | - |
1.2925 | 190 | 0.1852 | - | - |
1.3605 | 200 | 0.1908 | 0.1950 | - |
1.4286 | 210 | 0.2002 | - | - |
1.4966 | 220 | 0.1945 | - | - |
1.5646 | 230 | 0.193 | - | - |
1.6327 | 240 | 0.1893 | - | - |
1.7007 | 250 | 0.171 | 0.1937 | - |
1.7687 | 260 | 0.1848 | - | - |
1.8367 | 270 | 0.1909 | - | - |
1.9048 | 280 | 0.2138 | - | - |
1.9728 | 290 | 0.2014 | - | - |
2.0408 | 300 | 0.1855 | 0.1867 | - |
2.1088 | 310 | 0.1891 | - | - |
2.1769 | 320 | 0.1849 | - | - |
2.2449 | 330 | 0.1741 | - | - |
2.3129 | 340 | 0.1775 | - | - |
2.3810 | 350 | 0.178 | 0.1871 | - |
2.4490 | 360 | 0.1778 | - | - |
2.5170 | 370 | 0.174 | - | - |
2.5850 | 380 | 0.1654 | - | - |
2.6531 | 390 | 0.1954 | - | - |
2.7211 | 400 | 0.1584 | 0.1860 | - |
2.7891 | 410 | 0.2019 | - | - |
2.8571 | 420 | 0.1941 | - | - |
2.9252 | 430 | 0.1855 | - | - |
2.9932 | 440 | 0.1823 | - | - |
3.0 | 441 | - | - | 0.5533 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 21
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for harmonydata/mental_health_harmonisation_1
Base model
sentence-transformers/all-mpnet-base-v2Evaluation results
- Pearson Cosine on Unknownself-reported0.568
- Spearman Cosine on Unknownself-reported0.553