SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-mpnet-base-v2
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'I am not good at expressing my true feelings by the way I talk and look.',
    'Felt nervous or anxious?',
    'Experienced sleep disturbances?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.568
spearman_cosine 0.5533

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,351 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 5 tokens
    • mean: 16.73 tokens
    • max: 47 tokens
    • min: 5 tokens
    • mean: 14.82 tokens
    • max: 28 tokens
    • min: 0.0
    • mean: 0.26
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Do you believe in telepathy (mind-reading)? I believe that there are secret signs in the world if you just know how to look for them. 0.15
    Irritable behavior, angry outbursts, or acting aggressively? Felt “on edge”? 0.62
    I have some eccentric (odd) habits. I often have difficulty following what someone is saying to me. 0.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.L1Loss"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 236 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 236 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 16.4 tokens
    • max: 47 tokens
    • min: 5 tokens
    • mean: 14.76 tokens
    • max: 28 tokens
    • min: 0.0
    • mean: 0.29
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Feeling afraid as if something awful might happen? I have trouble following conversations with others. 0.19
    Do you believe in telepathy (mind-reading)? Feeling jumpy or easily startled? 0.1
    Other people see me as slightly eccentric (odd). I have felt that there were messages for me in the way things were arranged, like furniture in a room. 0.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.L1Loss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss spearman_cosine
0.0680 10 0.2239 - -
0.1361 20 0.2188 - -
0.2041 30 0.2007 - -
0.2721 40 0.2045 - -
0.3401 50 0.2179 0.2197 -
0.4082 60 0.2106 - -
0.4762 70 0.2124 - -
0.5442 80 0.2046 - -
0.6122 90 0.2069 - -
0.6803 100 0.1965 0.2112 -
0.7483 110 0.2355 - -
0.8163 120 0.2012 - -
0.8844 130 0.2402 - -
0.9524 140 0.2173 - -
1.0204 150 0.1763 0.2043 -
1.0884 160 0.1862 - -
1.1565 170 0.1854 - -
1.2245 180 0.193 - -
1.2925 190 0.1852 - -
1.3605 200 0.1908 0.1950 -
1.4286 210 0.2002 - -
1.4966 220 0.1945 - -
1.5646 230 0.193 - -
1.6327 240 0.1893 - -
1.7007 250 0.171 0.1937 -
1.7687 260 0.1848 - -
1.8367 270 0.1909 - -
1.9048 280 0.2138 - -
1.9728 290 0.2014 - -
2.0408 300 0.1855 0.1867 -
2.1088 310 0.1891 - -
2.1769 320 0.1849 - -
2.2449 330 0.1741 - -
2.3129 340 0.1775 - -
2.3810 350 0.178 0.1871 -
2.4490 360 0.1778 - -
2.5170 370 0.174 - -
2.5850 380 0.1654 - -
2.6531 390 0.1954 - -
2.7211 400 0.1584 0.1860 -
2.7891 410 0.2019 - -
2.8571 420 0.1941 - -
2.9252 430 0.1855 - -
2.9932 440 0.1823 - -
3.0 441 - - 0.5533

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
21
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for harmonydata/mental_health_harmonisation_1

Finetuned
(230)
this model

Evaluation results