jaydugad commited on
Commit
13115a1
·
1 Parent(s): 0ba6e2a

Upload José's mental health fine-tuned model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,451 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:2351
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/all-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: Are your thoughts sometimes so strong that you can almost hear
12
+ them?
13
+ sentences:
14
+ - My emotions have almost always seemed flat regardless of what is going on around
15
+ me.
16
+ - Having powerful images or memories that sometimes come into your mind in which
17
+ you feel the experience is happening again in the here and now?
18
+ - I often think that I hear people talking only to discover that there was no one
19
+ there.
20
+ - source_sentence: Having difficulty concentrating?
21
+ sentences:
22
+ - My thoughts are so hazy and unclear that I wish that I could just reach up and
23
+ put them into place.
24
+ - Most of the time I find it is very difficult to get my thoughts in order.
25
+ - Experienced sleep disturbances?
26
+ - source_sentence: Feeling jumpy or easily startled?
27
+ sentences:
28
+ - I often worry that someone or something is controlling my behavior.
29
+ - People find my conversations to be confusing or hard to follow.
30
+ - Worried a lot about different things?
31
+ - source_sentence: Do you often have to keep an eye out to stop people from taking
32
+ advantage of you?
33
+ sentences:
34
+ - I find that I am very often confused about what is going on around me.
35
+ - I sometimes wonder if there is a small group of people who can control everyone
36
+ else's behavior.
37
+ - I have sometimes felt that strangers were reading my mind.
38
+ - source_sentence: I am not good at expressing my true feelings by the way I talk
39
+ and look.
40
+ sentences:
41
+ - Felt down or depressed for most of the day
42
+ - Felt nervous or anxious?
43
+ - Experienced sleep disturbances?
44
+ pipeline_tag: sentence-similarity
45
+ library_name: sentence-transformers
46
+ metrics:
47
+ - pearson_cosine
48
+ - spearman_cosine
49
+ model-index:
50
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
51
+ results:
52
+ - task:
53
+ type: semantic-similarity
54
+ name: Semantic Similarity
55
+ dataset:
56
+ name: Unknown
57
+ type: unknown
58
+ metrics:
59
+ - type: pearson_cosine
60
+ value: 0.5680489773046146
61
+ name: Pearson Cosine
62
+ - type: spearman_cosine
63
+ value: 0.5532689999140259
64
+ name: Spearman Cosine
65
+ ---
66
+
67
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
68
+
69
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
70
+
71
+ ## Model Details
72
+
73
+ ### Model Description
74
+ - **Model Type:** Sentence Transformer
75
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
76
+ - **Maximum Sequence Length:** 384 tokens
77
+ - **Output Dimensionality:** 768 dimensions
78
+ - **Similarity Function:** Cosine Similarity
79
+ <!-- - **Training Dataset:** Unknown -->
80
+ <!-- - **Language:** Unknown -->
81
+ <!-- - **License:** Unknown -->
82
+
83
+ ### Model Sources
84
+
85
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
86
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
87
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
88
+
89
+ ### Full Model Architecture
90
+
91
+ ```
92
+ SentenceTransformer(
93
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
94
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
95
+ (2): Normalize()
96
+ )
97
+ ```
98
+
99
+ ## Usage
100
+
101
+ ### Direct Usage (Sentence Transformers)
102
+
103
+ First install the Sentence Transformers library:
104
+
105
+ ```bash
106
+ pip install -U sentence-transformers
107
+ ```
108
+
109
+ Then you can load this model and run inference.
110
+ ```python
111
+ from sentence_transformers import SentenceTransformer
112
+
113
+ # Download from the 🤗 Hub
114
+ model = SentenceTransformer("sentence_transformers_model_id")
115
+ # Run inference
116
+ sentences = [
117
+ 'I am not good at expressing my true feelings by the way I talk and look.',
118
+ 'Felt nervous or anxious?',
119
+ 'Experienced sleep disturbances?',
120
+ ]
121
+ embeddings = model.encode(sentences)
122
+ print(embeddings.shape)
123
+ # [3, 768]
124
+
125
+ # Get the similarity scores for the embeddings
126
+ similarities = model.similarity(embeddings, embeddings)
127
+ print(similarities.shape)
128
+ # [3, 3]
129
+ ```
130
+
131
+ <!--
132
+ ### Direct Usage (Transformers)
133
+
134
+ <details><summary>Click to see the direct usage in Transformers</summary>
135
+
136
+ </details>
137
+ -->
138
+
139
+ <!--
140
+ ### Downstream Usage (Sentence Transformers)
141
+
142
+ You can finetune this model on your own dataset.
143
+
144
+ <details><summary>Click to expand</summary>
145
+
146
+ </details>
147
+ -->
148
+
149
+ <!--
150
+ ### Out-of-Scope Use
151
+
152
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
153
+ -->
154
+
155
+ ## Evaluation
156
+
157
+ ### Metrics
158
+
159
+ #### Semantic Similarity
160
+
161
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
162
+
163
+ | Metric | Value |
164
+ |:--------------------|:-----------|
165
+ | pearson_cosine | 0.568 |
166
+ | **spearman_cosine** | **0.5533** |
167
+
168
+ <!--
169
+ ## Bias, Risks and Limitations
170
+
171
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
172
+ -->
173
+
174
+ <!--
175
+ ### Recommendations
176
+
177
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
178
+ -->
179
+
180
+ ## Training Details
181
+
182
+ ### Training Dataset
183
+
184
+ #### Unnamed Dataset
185
+
186
+
187
+ * Size: 2,351 training samples
188
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
189
+ * Approximate statistics based on the first 1000 samples:
190
+ | | sentence1 | sentence2 | score |
191
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
192
+ | type | string | string | float |
193
+ | details | <ul><li>min: 5 tokens</li><li>mean: 16.73 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.82 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.26</li><li>max: 1.0</li></ul> |
194
+ * Samples:
195
+ | sentence1 | sentence2 | score |
196
+ |:--------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------|:------------------|
197
+ | <code>Do you believe in telepathy (mind-reading)?</code> | <code>I believe that there are secret signs in the world if you just know how to look for them.</code> | <code>0.15</code> |
198
+ | <code>Irritable behavior, angry outbursts, or acting aggressively?</code> | <code>Felt “on edge”?</code> | <code>0.62</code> |
199
+ | <code>I have some eccentric (odd) habits.</code> | <code>I often have difficulty following what someone is saying to me.</code> | <code>0.0</code> |
200
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
201
+ ```json
202
+ {
203
+ "loss_fct": "torch.nn.modules.loss.L1Loss"
204
+ }
205
+ ```
206
+
207
+ ### Evaluation Dataset
208
+
209
+ #### Unnamed Dataset
210
+
211
+
212
+ * Size: 236 evaluation samples
213
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
214
+ * Approximate statistics based on the first 236 samples:
215
+ | | sentence1 | sentence2 | score |
216
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
217
+ | type | string | string | float |
218
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.4 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.76 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.29</li><li>max: 1.0</li></ul> |
219
+ * Samples:
220
+ | sentence1 | sentence2 | score |
221
+ |:----------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|:------------------|
222
+ | <code>Feeling afraid as if something awful might happen?</code> | <code>I have trouble following conversations with others.</code> | <code>0.19</code> |
223
+ | <code>Do you believe in telepathy (mind-reading)?</code> | <code>Feeling jumpy or easily startled?</code> | <code>0.1</code> |
224
+ | <code>Other people see me as slightly eccentric (odd).</code> | <code>I have felt that there were messages for me in the way things were arranged, like furniture in a room.</code> | <code>0.0</code> |
225
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
226
+ ```json
227
+ {
228
+ "loss_fct": "torch.nn.modules.loss.L1Loss"
229
+ }
230
+ ```
231
+
232
+ ### Training Hyperparameters
233
+ #### Non-Default Hyperparameters
234
+
235
+ - `eval_strategy`: steps
236
+ - `per_device_train_batch_size`: 16
237
+
238
+ #### All Hyperparameters
239
+ <details><summary>Click to expand</summary>
240
+
241
+ - `overwrite_output_dir`: False
242
+ - `do_predict`: False
243
+ - `eval_strategy`: steps
244
+ - `prediction_loss_only`: True
245
+ - `per_device_train_batch_size`: 16
246
+ - `per_device_eval_batch_size`: 8
247
+ - `per_gpu_train_batch_size`: None
248
+ - `per_gpu_eval_batch_size`: None
249
+ - `gradient_accumulation_steps`: 1
250
+ - `eval_accumulation_steps`: None
251
+ - `torch_empty_cache_steps`: None
252
+ - `learning_rate`: 5e-05
253
+ - `weight_decay`: 0.0
254
+ - `adam_beta1`: 0.9
255
+ - `adam_beta2`: 0.999
256
+ - `adam_epsilon`: 1e-08
257
+ - `max_grad_norm`: 1.0
258
+ - `num_train_epochs`: 3
259
+ - `max_steps`: -1
260
+ - `lr_scheduler_type`: linear
261
+ - `lr_scheduler_kwargs`: {}
262
+ - `warmup_ratio`: 0.0
263
+ - `warmup_steps`: 0
264
+ - `log_level`: passive
265
+ - `log_level_replica`: warning
266
+ - `log_on_each_node`: True
267
+ - `logging_nan_inf_filter`: True
268
+ - `save_safetensors`: True
269
+ - `save_on_each_node`: False
270
+ - `save_only_model`: False
271
+ - `restore_callback_states_from_checkpoint`: False
272
+ - `no_cuda`: False
273
+ - `use_cpu`: False
274
+ - `use_mps_device`: False
275
+ - `seed`: 42
276
+ - `data_seed`: None
277
+ - `jit_mode_eval`: False
278
+ - `use_ipex`: False
279
+ - `bf16`: False
280
+ - `fp16`: False
281
+ - `fp16_opt_level`: O1
282
+ - `half_precision_backend`: auto
283
+ - `bf16_full_eval`: False
284
+ - `fp16_full_eval`: False
285
+ - `tf32`: None
286
+ - `local_rank`: 0
287
+ - `ddp_backend`: None
288
+ - `tpu_num_cores`: None
289
+ - `tpu_metrics_debug`: False
290
+ - `debug`: []
291
+ - `dataloader_drop_last`: False
292
+ - `dataloader_num_workers`: 0
293
+ - `dataloader_prefetch_factor`: None
294
+ - `past_index`: -1
295
+ - `disable_tqdm`: False
296
+ - `remove_unused_columns`: True
297
+ - `label_names`: None
298
+ - `load_best_model_at_end`: False
299
+ - `ignore_data_skip`: False
300
+ - `fsdp`: []
301
+ - `fsdp_min_num_params`: 0
302
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
303
+ - `fsdp_transformer_layer_cls_to_wrap`: None
304
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
305
+ - `deepspeed`: None
306
+ - `label_smoothing_factor`: 0.0
307
+ - `optim`: adamw_torch
308
+ - `optim_args`: None
309
+ - `adafactor`: False
310
+ - `group_by_length`: False
311
+ - `length_column_name`: length
312
+ - `ddp_find_unused_parameters`: None
313
+ - `ddp_bucket_cap_mb`: None
314
+ - `ddp_broadcast_buffers`: False
315
+ - `dataloader_pin_memory`: True
316
+ - `dataloader_persistent_workers`: False
317
+ - `skip_memory_metrics`: True
318
+ - `use_legacy_prediction_loop`: False
319
+ - `push_to_hub`: False
320
+ - `resume_from_checkpoint`: None
321
+ - `hub_model_id`: None
322
+ - `hub_strategy`: every_save
323
+ - `hub_private_repo`: None
324
+ - `hub_always_push`: False
325
+ - `gradient_checkpointing`: False
326
+ - `gradient_checkpointing_kwargs`: None
327
+ - `include_inputs_for_metrics`: False
328
+ - `include_for_metrics`: []
329
+ - `eval_do_concat_batches`: True
330
+ - `fp16_backend`: auto
331
+ - `push_to_hub_model_id`: None
332
+ - `push_to_hub_organization`: None
333
+ - `mp_parameters`:
334
+ - `auto_find_batch_size`: False
335
+ - `full_determinism`: False
336
+ - `torchdynamo`: None
337
+ - `ray_scope`: last
338
+ - `ddp_timeout`: 1800
339
+ - `torch_compile`: False
340
+ - `torch_compile_backend`: None
341
+ - `torch_compile_mode`: None
342
+ - `dispatch_batches`: None
343
+ - `split_batches`: None
344
+ - `include_tokens_per_second`: False
345
+ - `include_num_input_tokens_seen`: False
346
+ - `neftune_noise_alpha`: None
347
+ - `optim_target_modules`: None
348
+ - `batch_eval_metrics`: False
349
+ - `eval_on_start`: False
350
+ - `use_liger_kernel`: False
351
+ - `eval_use_gather_object`: False
352
+ - `average_tokens_across_devices`: False
353
+ - `prompts`: None
354
+ - `batch_sampler`: batch_sampler
355
+ - `multi_dataset_batch_sampler`: proportional
356
+
357
+ </details>
358
+
359
+ ### Training Logs
360
+ | Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
361
+ |:------:|:----:|:-------------:|:---------------:|:---------------:|
362
+ | 0.0680 | 10 | 0.2239 | - | - |
363
+ | 0.1361 | 20 | 0.2188 | - | - |
364
+ | 0.2041 | 30 | 0.2007 | - | - |
365
+ | 0.2721 | 40 | 0.2045 | - | - |
366
+ | 0.3401 | 50 | 0.2179 | 0.2197 | - |
367
+ | 0.4082 | 60 | 0.2106 | - | - |
368
+ | 0.4762 | 70 | 0.2124 | - | - |
369
+ | 0.5442 | 80 | 0.2046 | - | - |
370
+ | 0.6122 | 90 | 0.2069 | - | - |
371
+ | 0.6803 | 100 | 0.1965 | 0.2112 | - |
372
+ | 0.7483 | 110 | 0.2355 | - | - |
373
+ | 0.8163 | 120 | 0.2012 | - | - |
374
+ | 0.8844 | 130 | 0.2402 | - | - |
375
+ | 0.9524 | 140 | 0.2173 | - | - |
376
+ | 1.0204 | 150 | 0.1763 | 0.2043 | - |
377
+ | 1.0884 | 160 | 0.1862 | - | - |
378
+ | 1.1565 | 170 | 0.1854 | - | - |
379
+ | 1.2245 | 180 | 0.193 | - | - |
380
+ | 1.2925 | 190 | 0.1852 | - | - |
381
+ | 1.3605 | 200 | 0.1908 | 0.1950 | - |
382
+ | 1.4286 | 210 | 0.2002 | - | - |
383
+ | 1.4966 | 220 | 0.1945 | - | - |
384
+ | 1.5646 | 230 | 0.193 | - | - |
385
+ | 1.6327 | 240 | 0.1893 | - | - |
386
+ | 1.7007 | 250 | 0.171 | 0.1937 | - |
387
+ | 1.7687 | 260 | 0.1848 | - | - |
388
+ | 1.8367 | 270 | 0.1909 | - | - |
389
+ | 1.9048 | 280 | 0.2138 | - | - |
390
+ | 1.9728 | 290 | 0.2014 | - | - |
391
+ | 2.0408 | 300 | 0.1855 | 0.1867 | - |
392
+ | 2.1088 | 310 | 0.1891 | - | - |
393
+ | 2.1769 | 320 | 0.1849 | - | - |
394
+ | 2.2449 | 330 | 0.1741 | - | - |
395
+ | 2.3129 | 340 | 0.1775 | - | - |
396
+ | 2.3810 | 350 | 0.178 | 0.1871 | - |
397
+ | 2.4490 | 360 | 0.1778 | - | - |
398
+ | 2.5170 | 370 | 0.174 | - | - |
399
+ | 2.5850 | 380 | 0.1654 | - | - |
400
+ | 2.6531 | 390 | 0.1954 | - | - |
401
+ | 2.7211 | 400 | 0.1584 | 0.1860 | - |
402
+ | 2.7891 | 410 | 0.2019 | - | - |
403
+ | 2.8571 | 420 | 0.1941 | - | - |
404
+ | 2.9252 | 430 | 0.1855 | - | - |
405
+ | 2.9932 | 440 | 0.1823 | - | - |
406
+ | 3.0 | 441 | - | - | 0.5533 |
407
+
408
+
409
+ ### Framework Versions
410
+ - Python: 3.10.12
411
+ - Sentence Transformers: 3.3.1
412
+ - Transformers: 4.47.1
413
+ - PyTorch: 2.5.1+cu121
414
+ - Accelerate: 1.2.1
415
+ - Datasets: 3.2.0
416
+ - Tokenizers: 0.21.0
417
+
418
+ ## Citation
419
+
420
+ ### BibTeX
421
+
422
+ #### Sentence Transformers
423
+ ```bibtex
424
+ @inproceedings{reimers-2019-sentence-bert,
425
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
426
+ author = "Reimers, Nils and Gurevych, Iryna",
427
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
428
+ month = "11",
429
+ year = "2019",
430
+ publisher = "Association for Computational Linguistics",
431
+ url = "https://arxiv.org/abs/1908.10084",
432
+ }
433
+ ```
434
+
435
+ <!--
436
+ ## Glossary
437
+
438
+ *Clearly define terms in order to be accessible across audiences.*
439
+ -->
440
+
441
+ <!--
442
+ ## Model Card Authors
443
+
444
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
445
+ -->
446
+
447
+ <!--
448
+ ## Model Card Contact
449
+
450
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
451
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.2,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.2,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bc151b6fc16adf8869db8263b5d384970ff64ff65344d6516ff6898fd086547
3
+ size 437967672
model_jose.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e3146bf10e97be55bb18b3a77ba118467a790dc982359b99a488f6b37204b3f
3
+ size 405249743
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 128,
60
+ "model_max_length": 384,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff