harsha-thinkingstack's picture
Upload folder using huggingface_hub
1c80bb0 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:267
  - loss:ContrastiveLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
  - source_sentence: >-
      hypertension

      The patient's primary diagnosis is hypertension, as stated in the visit
      note.

      BP medications

      The patient is on BP medications which are used to treat hypertension.

      BP management

      The visit note mentions follow-up on BP management, indicating ongoing
      treatment for hypertension.

      HTN

      HTN is the abbreviation for hypertension, which is the patient's diagnosed
      condition.

      BP was measured at 138/90

      This blood pressure reading supports the diagnosis of hypertension as it
      is elevated.

      monthly bp at home have been around that number or higher

      Consistently high blood pressure readings confirm the presence of
      hypertension.

      most likely diagnosis for this patient is hypertension

      The visit note explicitly states that hypertension is the most likely
      diagnosis.
    sentences:
      - Anemia, Unspecified
      - Essential (Primary) Hypertension
      - Dehydration
  - source_sentence: >-
      BMI ABOVE NORMAL PARAM F/U DOCUMENTED

      This phrase indicates that the patient's BMI is above normal parameters
      and requires follow-up, which is a key indicator for obesity
      classification.

      34.11

      The specific BMI value of 34.11 falls within the range for Class 1 obesity
      (30.0-34.9), providing numerical confirmation of the diagnosis.

      Class 1 obesity

      This is the explicit statement of the patient's condition, directly
      aligning with the ICD code E66.811 for Class 1 obesity.
    sentences:
      - Obesity, Class 1
      - Hypothyroidism, Unspecified
      - Overweight
  - source_sentence: >-
      anxious and uses food for comfort

      This phrase indicates the presence of anxiety symptoms, specifically using
      food as a coping mechanism, which aligns with an unspecified anxiety
      disorder.
    sentences:
      - Essential (Primary) Hypertension
      - Essential (Primary) Hypertension
      - Anxiety Disorder, Unspecified
  - source_sentence: >-
      compression stockings

      Compression stockings are a treatment for venous insufficiency, which can
      cause localized edema.

      venous insufficiency

      Venous insufficiency is a condition that leads to leg edema, which is a
      type of localized edema.

      Leg edema

      Leg edema is a direct symptom of localized edema.

      edema

      Edema refers to swelling caused by fluid retention, which aligns with the
      ICD code R60.0 for Localized Edema.
    sentences:
      - Nasal Congestion
      - Localized Edema
      - Essential (Primary) Hypertension
  - source_sentence: >-
      Had lithotripsy and passed an 8x5 mm stone on L.

      This phrase indicates a history of urinary calculi as evidenced by the
      treatment (lithotripsy) for kidney stones.
    sentences:
      - Pure Hypercholesterolemia, Unspecified
      - Personal History Of Urinary Calculi
      - Menopausal And Female Climacteric States
pipeline_tag: sentence-similarity
library_name: sentence-transformers

SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Had lithotripsy and passed an 8x5 mm stone on L.\nThis phrase indicates a history of urinary calculi as evidenced by the treatment (lithotripsy) for kidney stones.',
    'Personal History Of Urinary Calculi',
    'Pure Hypercholesterolemia, Unspecified',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 267 training samples
  • Columns: anchor, positive, and label
  • Approximate statistics based on the first 267 samples:
    anchor positive label
    type string string float
    details
    • min: 12 tokens
    • mean: 94.12 tokens
    • max: 256 tokens
    • min: 3 tokens
    • mean: 9.77 tokens
    • max: 23 tokens
    • min: 1.0
    • mean: 1.0
    • max: 1.0
  • Samples:
    anchor positive label
    T2DM
    Directly indicates the diagnosis of Type 2 Diabetes Mellitus without complications as stated in the Problem/Dx section.
    Type 2 Diabetes Mellitus Without Complications 1.0
    Atorvastatin
    Atorvastatin is a statin medication prescribed to lower cholesterol levels, directly addressing hypercholesterolemia.
    Hyperlipidemia
    Hyperlipidemia is a broader term that includes high cholesterol (hypercholesterolemia), which is explicitly mentioned in the assessment.
    statin therapy
    Statin therapy, including Atorvastatin, is specifically noted as part of the treatment plan for managing high cholesterol.
    Hypercholesterolemia
    Explicitly listed under assessment as a condition being managed, aligning with the ICD code E78.00.
    Pure Hypercholesterolemia, Unspecified 1.0
    Encounter for immunization (Z23)
    This phrase directly indicates the ICD code Z23 and its description as the reason for the encounter.
    Encounter For Immunization 1.0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss
0.0588 1 0.1007
0.1176 2 0.1131
0.1765 3 0.099
0.2353 4 0.0867
0.2941 5 0.0682
0.3529 6 0.1019
0.4118 7 0.0618
0.4706 8 0.0623
0.5294 9 0.0564
0.5882 10 0.0521
0.6471 11 0.0545
0.7059 12 0.0335
0.7647 13 0.0593
0.8235 14 0.0381
0.8824 15 0.0308
0.9412 16 0.0487
1.0 17 0.0398

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 3.4.1
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}